首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The binding of group 12 metal ions to bis(2-methylpyridyl) sulfide (1) was investigated by X-ray crystallography and NMR. Seven structures of the chloride and perchlorate salts of Hg(II), Cd(II), and Zn(II) with 1 are reported. Hg(1)(2)(ClO(4))(2), Cd(1)(2)(ClO(4))(2), and Zn(1)(2)(ClO(4))(2).CH(3)CN form mononuclear, six-coordinate species in the solid state with 1 binding in a tridentate coordination mode. Hg(1)(2)(ClO(4))(2) has a distorted trigonal prismatic coordination geometry while Cd(1)(2)(ClO(4))(2) and Zn(1)(2)(ClO(4))(2).CH(3)CN have distorted octahedral geometries. With chloride anions, the 1:1 metal to ligand complexes Hg(1)Cl(2), [Cd(1)Cl(2)](2), and Zn(1)Cl(2) are formed. A bidentate binding mode that lacks thioether coordination is observed for 1 in the four-coordinate, distorted tetrahedral complexes Zn(1)Cl(2) and Hg(1)Cl(2). [Cd(1)Cl(2)](2) is dimeric with a distorted octahedral coordination geometry and a tridentate 1. Hg(1)Cl(2) is comprised of pairs of loosely associated monomers and Zn(1)Cl(2) is monomeric. In addition, Hg(2)(1)Cl(4) is formed with alternating chloride and thioether bridges. The distorted square pyramidal Hg(II) centers result in a supramolecular zigzagging chain in the solid state. The solution (1)H NMR spectra of [Hg(1)(2)](2+) and [Hg(1)(NCCH(3))(x)()](2+) reveal (3)(-)(5)J((199)Hg(1)H) due to slow ligand exchange found in these thioether complexes. Implications for use of Hg(II) as a metallobioprobe are discussed.  相似文献   

2.
The work in the present investigation reports the syntheses, structures, steady state, and time-resolved photophysical properties of a tetraiminodiphenol macrocyclic ligand H(2)L and its eight dinuclear zinc(II) complexes and one cadmium(II) complex having composition [Zn(2)L(H(2)O)(2)](ClO(4))(2)·2CH(3)CN (1), [Zn(2)L(H(2)O)(2)](ClO(4))(2)·2dmf (2), [Zn(2)L(H(2)O)(2)](NO(3))(2)·2dmf (3), [Zn(2)LCl(2)] (4), [Zn(2)L(N(3))(2)] (5), [Zn(2)L(NCS)(2)] (6), [Zn(2)L(NCO)(2)] (7), [Zn(2)L(NCSe)(2)](2)·dmf (8), and [Cd(2)L(OAc)(2)] (9) with various coordinating and noncoordinating anions. The structures of all the complexes 1-9 have been determined by single-crystal X-ray diffraction. The noncovalent interactions in the complexes result in the generation of the following topologies: two-dimensional network in 1, 2, 4, 6, 7, 8, and 9; three-dimensional network in 5. Spectrophotometric and spectrofluorometric titrations of the diprotonated salt [H(4)L](ClO(4))(2) with triethylamine as well as with zinc(II) acetate and cadmium(II) acetate have been carried out, revealing fluorescence enhancement of the macrocyclic system by the base and the metal ions. Steady state fluorescence properties of [H(4)L](ClO(4))(2) and 1-9 have been studied and their quantum yields have been determined. Time resolved fluorescence behavior of [H(4)L](ClO(4))(2) and the dizinc(II) and dicadmium(II) complexes 1-9 have also been studied, and their lifetimes and radiative and nonradiative rate constants have been determined. The induced fluorescence enhancement of the macrocycle by zinc(II) and cadmium(II) is in line with the greater rate of increase of the radiative rate constants in comparison to the smaller rate of increase of nonradiative rate constants for the metal complexes. The fluorescence decay profiles of all the systems, being investigated here, that is, [H(4)L](ClO(4))(2) and 1-9, follow triexponential patterns, revealing that at least three conformers/components are responsible to exhibit the fluorescence decay behavior. The systems and studies in this report have been compared with those in the reports of the previously published similar systems, revealing some interesting aspects.  相似文献   

3.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

4.
The reaction equilibria [H(4)L](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(H(2)L)](2+) + 2HOAc (K(1)) and [Zn(H(2)L)](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(2)L](2+) + 2HOAc (K(2)), involving zinc acetate and the perchlorate salts of the tetraiminodiphenol macrocycles [H(4)L(1)(-)(3)](ClO(4))(2), the lateral (CH(2))(n)() chains of which vary between n = 2 and n = 4, have been studied by spectrophotometric and spectrofluorimetric titrations in acetonitrile. The photoluminescence behavior of the complexes [Zn(2)L(1)](ClO(4))(2), [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(2)(mu-O(2)CR)](ClO(4)) (R = CH(3), C(6)H(5), p-CH(3)C(6)H(4), p-OCH(3)C(6)H(4), p-ClC(6)H(4), p-NO(2)C(6)H(4)), and [Zn(2)L(3)(mu-OAc)](ClO(4)) have been investigated. The X-ray crystal structures of the complexes [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(3)(mu-OAc)](ClO(4)), and [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) have been determined. The complex [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) in which the coordinated water molecule is present as the hydronium ion (H(3)O(+)) on deprotonation gives rise to the neutral dibenzoate-bridged compound [Zn(2)L(2)(mu-OBz)(2)].H(2)O. The equilibrium constants (K) for the reaction [Zn(2)L(2)(H(2)O)(2)](2+) + A(-) right harpoon over left harpoon [Zn(2)L(2)A](+) + 2H(2)O (K), where A(-) = acetate, benzoate, or the carboxylate moiety of the amino acids glycine, l-alanine, l-histidine, l-valine, and l-proline, have been determined spectrofluorimetrically in aqueous solution (pH 6-7) at room temperature. The binding constants (K) evaluated for these systems vary in the range (1-8) x 10(5).  相似文献   

5.
Ligands L1 and L2' (L1=N,N',N'-tris(4-pyridyl)trimesic amide, L2'=N,N',N'-tris(3-pyridinyl)-1,3,5-benzenetricarboxamide) belonging to an interesting family of tripyridyltriamides with C(3)-symmetry have been utilized to construct 3D porous or hydrogen-bonded frameworks. Through a novel single-crystal-to-single-crystal anion-exchange process, [Cd(L1)(2)(ClO(4))(2)](n) (1c) can be obtained from [Cd(L1)(2)Cl(2)](n) (1b) in the presence of ClO(4)(-) anions. This anion-exchange process is highly selective and only the substitution of Cl(-) by ClO(4)(-) or PF(6)(-) could be realized; Cl(-) was found not to be substituted by BPh(4)(-). This demonstrates that the exchange process depends on the size of the anions in relation to the size of the cavities in the host material (ca. 7.5 A). In addition, the anion-exchange properties of 1 b have also been investigated by means of powder X-ray diffraction (PXRD), elemental analysis (EA), and infrared absorption spectroscopy (IR). Structurally, [Zn(L1)(NO(3))(2)](n)(2) consists of a 2D coordination network with five-coordinate Zn(II) ions. Surprisingly, different trigonal-bipyramidal Zn(II) ions propagate to form distinct respective sheet structures, A and B, which are packed in an A-B-A-B manner in the crystal lattice, and these are hydrogen-bonded to give a 3D extended framework. The molecular structure of [CuI(L2')](n)(3) shows that the Cu(I) ion adopts a distorted tetrahedral geometry, and 3 also forms a 2D coordination network. Significantly, this 2D coordination network is further assembled into a remarkable 3D homochiral framework through triple hydrogen bonding and pi...pi interactions. All of these 3D coordination polymers and/or hydrogen-bonded frameworks are luminescent in the solid state, and their solid-state luminescent properties have been investigated at room temperature and/or at 77 K.  相似文献   

6.
Reactions of Cd(NO(3))(2)·4H(2)O with TabHPF(6) (TabH = 4-(trimethylammonio)benzenethiol) and Et(3)N in the presence of NH(4)SCN and five other N-donor ligands such as 2,2'-bipyridine (2,2'-bipy), phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (2,9-dmphen), 2,6-bis(pyrazd-3-yl)pyridine (bppy) and 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)pyridine (bdmppy) gave rise to a family of Cd(II)/thiolate complexes of N-donor ligands, {[Cd(2)(μ-Tab)(4)(NCS)(2)](NO(3))(2)·MeOH}(n) (1), [Cd(2)(μ-Tab)(2)(L)(4)](PF(6))(4) (2: L = 2,2'-bipy; 3: L = phen), [Cd(Tab)(2)(L)](PF(6))(2) (4: L = 2,9-dmphen; 5: L = bppy), and [Cd(2)(μ-Tab)(2)(Tab)(2)(bdmppy)](2)(PF(6))(8)·H(2)O (6·H(2)O). These compounds were characterized by elemental analysis, IR spectra, UV-Vis spectra, (1)H NMR, electrospray ionization (ESI) mass spectra and single-crystal X-ray diffraction. For 1, each [Cd(NCS)](+) fragment is connected to its equivalents via a pair of Tab bridges to a one-dimensional chain. For 2 and 3, two [Cd(2,2'-bipy)(2)](2+) or [Cd(phen)(2)](2+) units are linked by a pair of Tab bridges to form a cationic dimeric structure. The Cd atom in [Cd(Tab)(2)(L)](2+) dication of 4 or 5 is coordinated by two Tab ligands and chelated by two N atoms from 2,9-dmphen (4) or three N atoms from bppy (5), forming a distorted tetrahedral (4) or trigonal bipyramidal (5) coordination geometry. For 6, each of two [Cd(Tab)(bdmppy)] fragments is linked to one [(Tab)Cd(μ-Tab)(2)Cd(Tab)] fragment via two Tab bridges to generate a unique cationic zigzag tetrameric structure where the Cd centers take a tetrahedral or a trigonal bipyramidal coordination geometry. The results may provide an interesting insight into mimicking the coordination spheres of the Cd(II) sites of metallothioneins and their interactions with various N-donor ligands encountered in nature.  相似文献   

7.
Slow evaporation of solutions prepared by adding either Cu(ClO(4))(2).6H(2)O or Zn(ClO(4))(2).6H(2)O to solutions containing appropriate proportions of Me(3)tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) and sodium phenyl phosphate (Na(2)PhOPO(3)) gave dark blue crystals of [Cu(3)(Me(3)tacn)(3)(PhOPO(3))(2)](ClO(4))(2).(1)/(2)H(2)O (1) and colorless crystals of [Zn(2)(Me(3)tacn)(2)(H(2)O)(4)(PhOPO(3))](ClO(4))(2).H(2)O (2), respectively. Blue crystals of [Cu(tacn)(2)](BNPP)(2) (3) formed in an aqueous solution of [Cu(tacn)Cl(2)], bis(p-nitrophenyl phosphate) (BNPP), and HEPES buffer (pH 7.4). Compound 1 crystallizes in the triclinic space group P1 (No. 2) with a = 9.8053(2) A, b = 12.9068(2) A, c = 22.1132(2) A, alpha = 98.636(1) degrees, beta = 99.546(1) degrees, gamma = 101.1733(8) degrees, and Z = 2 and exhibits trinuclear Cu(II) clusters in which square pyramidal metal centers are capped by two phosphate esters located above and below the plane of the metal centers. The trinuclear cluster is asymmetric having Cu...Cu distances of 4.14, 4.55, and 5.04 A. Compound 2 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 13.6248(2) A, b = 11.6002(2) A, c = 25.9681(4) A, beta = 102.0072(9) degrees, and Z = 4 and contains a dinuclear Zn(II) complex formed by linking two units of [Zn(Me(3)tacn)(OH(2))(2)](2+) by a single phosphate ester. Compound 3 crystallizes in the monoclinic space group C2/c (No. 15) with a = 24.7105(5) A, b = 12.8627(3) A, c = 14.0079(3) A, beta = 106.600(1) degrees, and Z = 4 and consists of mononuclear [Cu(tacn)(2)](2+) cations whose charge is balanced by the BNPP(-) anions.  相似文献   

8.
New homo trinuclear Zn(II) complexes [Zn(3)L(1)(micro-OAc)](ClO(4))(2).3CHCl(3).H(2)O, 1, and [Zn(3)L(1)(micro-OAc)].ClO(4).PF(6).5CH(3)OH.H(2)O, 2, and hetero trinuclear complex [Zn(2)CuL(1)(micro-OAc)](ClO(4))(2).3CHCl(3).H(2)O,3, of optically active hexaaza triphenolic macrocycle H(3)L(1) were synthesized and crystallographically characterized. The cation [Zn(3)L(1)(micro-OAc)](+) structure of 1 and 2 closely resembles the trinuclear Zn(II) active site of P1 nuclease. The distorted tetrahedral geometry of Zn3 was successfully reproduced at Cu1 in complex 3. The complexes 2 and 3 cleave CT DNA at 37 and 50 degrees C.  相似文献   

9.
A novel 2,2':6',2'-terpyridine-based ligand L and its complexes [ML(2)](ClO(4))(2)·CH(2)Cl(2) (M = Cd 1, Zn 2, Cu 4, Mn 5), [CoL(2)](ClO(4))(2)3, CdLI(2)6 and CdL(SCN)(2)7 were synthesized and fully characterized. The crystal structures of 1-6 were solved by single crystal X-ray diffraction analysis. The linear absorption and emission properties, and third-order nonlinear optical (NLO) properties of all the complexes were systematically investigated. The equilibrium of the trans- and cis- isomers of L was studied both experimentally and theoretically. The configurations and photophysical properties of the complexes display a large dependence on the choice of metal ions and anions.  相似文献   

10.
The ditopic ligand PyPzOAPz (N-[(Z)-amino(pyrazin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid) was synthesized by in situ condensation of methyl imino pyrazine-2-carboxylate with 5-methyl-1-(2-pyridyl) pyrazole-3-carbohydrazide. In this work we have also used two of our earlier ligands PzCAP (5-methyl-N-[(1E)-1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2009, 8215) and PzOAP (N-[(Z)-amino(pyridin-2-yl)methylidene]-5-methyl-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2007, 1229). These ligands PzCAP, PzOAP and PyPzOAPz were made to react with Mn(ClO(4))(2)·6H(2)O to produce three pentanuclear Mn(II) clusters [Mn(5)(PzCAP)(6)](ClO(4))(4) (1), [Mn(5)(PzOAP)(6)](ClO(4))(4) (2) and [Mn(5)(PyPzOAPz)(6)](ClO(4))(4) (3). These complexes have been characterized by X-ray structural analyses and variable temperature magnetic susceptibility measurements. All complexes have a pentanuclear core with trigonal bipyramidal arrangement of Mn(II) atoms, where, the axial metal centers have a N(3)O(3) chromophore and the equatorial centers have N(4)O(2) with an octahedral arrangement. These Mn(5)(II) clusters 1, 2 and 3 show the presence of antiferromagnetic coupling within the pentanuclear manganese(II) core (J = -2.95, -3.19 and -3.00 cm(-1) respectively). Density functional theory calculations and continuous shape measurement (CShM) studies have been performed on these complexes to provide a qualitative theoretical interpretation of the antiferromagnetic behaviour shown by them. The pentanuclear Mn(II) cluster (1) on reaction with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion in CH(3)OH:H(2)O (60?:?40) forms a homoleptic [2 × 2] tetranuclear Cu(4)(II) grid [Cu(4)(PzCAP)(4)(NO(3))(2)](NO(3))(2)·8H(2)O (4). The same Cu(4)(II) grid is also obtained from a direct reaction between the ditopic ligand PzCAP with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion. This conversion of a cluster to a grid is a novel observation.  相似文献   

11.
A 1D double-zigzag framework, {[Zn(paps)(2)(H(2)O)(2)](ClO(4))(2)}(n) (1; paps = N,N'-bis(pyridylcarbonyl)-4,4'-diaminodiphenyl thioether), was synthesized by the reaction of Zn(ClO(4))(2) with paps. However, a similar reaction, except that dry solvents were used, led to the formation of a novel 2D polyrotaxane framework, [Zn(paps)(2)(ClO(4))(2)](n) (2). This difference relies on the fact that water coordinates to the Zn(II) ion in 1, but ClO(4)(-) ion coordination is found in 2. Notably, the structures can be interconverted by heating and grinding in the presence of moisture, and such a structural transformation can also be proven experimentally by powder and single-crystal X-ray diffraction studies. The related N,N'-bis- (pyridylcarbonyl)-4,4'-diaminodiphenyl ether (papo) and N,N'-(methylenedi-para-phenylene)bispyridine-4-carboxamide (papc) ligands were reacted with Zn(II) ions as well. When a similar reaction was performed with dry solvents, except that papo was used instead of paps, the product mixture contained mononuclear [Zn(papo)(CH(3)OH)(4)](ClO(4))(2) (5) and the polyrotaxane [Zn(papo)(2)(ClO(4))(2)](n) (4). From the powder XRD data, grinding this mixture in the presence of moisture resulted in total conversion to the pure double-zigzag {[Zn(papo)(2)(H(2)O)(2)](ClO(4))(2)}(n) (3) immediately. Upon heating 3, the polyrotaxane framework of 4 was recovered. The double-zigzag {[Zn(papc)(2)(H(2)O)(2)](ClO(4))(2)}(n) (6) and polyrotaxane [Zn(papc)(2)(ClO(4))(2)](n) (7) were synthesized in a similar reaction. Although upon heating the double-zigzag 6 undergoes structural transformation to give the polyrotaxane 7, grinding solid 7 in the presence of moisture does not lead to the formation of 6. Significantly, the bright emissions for double-zigzag frameworks of 1 and 3 and weak ones for polyrotaxane frameworks of 2 and 4 also show interesting mechanochromic luminescence.  相似文献   

12.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

13.
Utilizing 3,5-bis(x-pyridyl)-1,2,4-triazole (x-Hpytz, x = 3; x = 4) as multidentate ligands, six novel coordination polymers with Zn(II) or Cd(II) metal ions were prepared: [Zn(3-pytz)(0.5)(OH)(0.5)Cl](n) (1, 1D ladder), {[Zn(3-Hpytz)(H(2)O)(4)] [Zn(3-Hpytz)(H(2)O)(3)·SO(4)]SO(4)·5H(2)O}(n) (2·5H(2)O, 1D chain), [Cd(3-Hpytz)(SO(4))](n) (3, 3D framework), {[Cd(3-Hyptz)SO(4)·3H(2)O]·2H(2)O}(n) (4·2H(2)O, 1D chain), [Zn(4-pytz)Cl](n) (5, 3D framework) and [Zn(2)(4-pytz)(SO(4))(OH)](n) (6, 3D framework). All compounds were obtained from hydrothermal reactions, with the exception of compound 4 which was obtained by solvent diffusion at room temperature. All compounds were characterized by FTIR, elemental analysis and TGA analysis and their structures were determined by X-ray diffraction. All compounds exhibited substantial thermal stability and showed photofluorescent properties that resulted from ligand π-π* transition.  相似文献   

14.
The reaction of manganese(II) salts with organophosphonic acid [t-BuPO(3)H(2) or cyclopentyl phosphonic acid (C(5)H(9)PO(3)H(2))] in the presence of ancillary nitrogen ligands [1,10-phenanthroline (phen) or 2,6-bis(pyrazol-3-yl)pyridine (dpzpy)], afforded, depending on the stoichiometry of the reactants and the reaction conditions, dinuclear, trinuclear, and tetranuclear compounds, [Mn(2)(t-BuPO(3)H)(4)(phen)(2)]·2DMF (1), [Mn(3)(C(5)H(9)PO(3))(2)(phen)(6)](ClO(4))(2)·7CH(3)OH (2), [Mn(3)(t-BuPO(3))(2)(dpzpy)(3)](ClO(4))(2)·H(2)O (3), [Mn(4)(t-BuPO(3))(2)(t-BuPO(3)H)(2)(phen)(6)(H(2)O)(2)](ClO(4))(2) (4), and [Mn(4)(C(5)H(9)PO(3))(2)(phen)(8)(H(2)O)(2)](ClO(4))(4) (5). Magnetic studies on 1, 2, and 4 reveal that the phosphonate bridges mediate weak antiferromagnetic interactions between the Mn(II) ions have also been carried out.  相似文献   

15.
Treatment of the bmnpa (N,N-bis-2-(methylthio)ethyl-N-((6-neopentylamino-2-pyridyl)methyl)amine) ligand with equimolar amounts of Cd(ClO(4))(2).5H(2)O and Me(4)NOH.5H(2)O in CH(3)CN yielded the binuclear cadmium hydroxide complex [((bmnpa)Cd)(2)(mu-OH)(2)](ClO(4))(2).CH(3)CN (1). Complex 1 may also be prepared (a) by treatment of a CH(3)CN solution of (bmnpa)Cd(ClO(4))(2) (2) with 1 equiv of n-BuLi, followed by treatment with water or (b) from 2 in the presence of 1 equiv each of water and NEt(3). The hydroxide derivative 1 is not produced from 2 and water in the absence of an added base. Complex 1 possesses a binuclear structure in the solid state with hydrogen-bonding and CH/pi interactions involving the bmnpa ligand. The overall structural features of 1 differ from the halide derivative [((bmnpa)Cd)(2)(mu-Cl)(2)](ClO(4))(2) (3), particularly in that the Cd(2)(mu-OH)(2) core of 1 is symmetric whereas the Cd(2)(mu-Cl)(2) core of 3 is asymmetric. In acetonitrile solution, 1 behaves as a 1:2 electrolyte and retains a binuclear structure and secondary hydrogen-bonding and CH/pi interactions, whereas 3 is a 1:1 electrolyte, indicating formation of a mononuclear [(bmnpa)CdCl]ClO(4) species in solution. Treatment of 1 with CO(2) in anhydrous CH(3)CN yields the bridging carbonate complex [((bmnpa)Cd)(2)(mu-CO(3))](ClO(4))(2).CH(3)CN (4). Treatment of a chemically similar zinc hydroxide complex, [((benpa)Zn)(2)(mu-OH)(2)](ClO(4))(2) (benpa = N,N-bis-2-(ethylthio)ethyl-N-((6-neopentylamino-2-pyridyl)methyl)amine, with CO(2) also results in the formation of a carbonate derivative, [((benpa)Zn)(2)(mu-CO(3))](ClO(4))(2) (5), albeit the coordination mode of the bridging carbonate moiety is different. Treatment of 4 with added water results in no reaction, whereas 5 under identical conditions will undergo reaction to yield the zinc hydroxide complex [((benpa)Zn)(2)(mu-OH)(2)](ClO(4))(2).  相似文献   

16.
Two new one-dimensional heterometallic complexes, [Mn(3)Na(L)(4)(CH(3)CO(2))(MeOH)(2)](ClO(4))(2)·3H(2)O (1), [Mn(3)Na(L)(4)(CH(3)CH(2)CO(2))(MeOH)(2)](ClO(4))(2)·2MeOH·H(2)O (2) [LH(2) = 2-methyl-2-(2-pyridyl)propane-1,3-diol], have been synthesized and characterized by X-ray crystallography. Both complexes feature Mn(II) and Na(I) ions in trigonal-prismatic geometries that are linked to octahedral Mn(IV) ions by alkoxy bridges. Variable-temperature direct- and alternating-current magnetic susceptibility data indicated a spin ground state of S = 11/2 for both complexes. Density functional theory calculations performed on 1 supported this conclusion.  相似文献   

17.
We have prepared and characterized a new phenol-based compartmental ligand (H(2)L) incorporating 1,4,7-triazacyclononane ([9]aneN(3)), and we have investigated its coordination behavior with Cu(II), Zn(II), Cd(II), and Pb(II). The protonation constants of the ligand and the thermodynamic stabilities of the 1:1 and 2:1 (metal/ligand) complexes with these metal ions have been investigated by means of potentiometric measurements in aqueous solutions. The mononuclear [M(L)] complexes show remarkably high stability suggesting that, along with the large number of nitrogen donors available for metal binding, deprotonated phenolic functions are also involved in binding the metal ion. The mononuclear complexes [M(L)] show a marked tendency to add a second metal ion to afford binuclear species. The formation of complexes [M(2)(H(2)L)](4+) occurs at neutral or slightly acidic pH and is generally followed by metal-assisted deprotonation of the phenolic groups to give [M(2)(HL)](3+) and [M(2)(L)](2+) in weakly basic solutions. The complexation properties of H(2)L have also been investigated in the solid state. Crystals suitable for X-ray structural analysis were obtained for the binuclear complexes [Cu(2)(L)](BF(4))(2).(1)/(2)MeCN (1), [Zn(2)(HL)](ClO(4))(3).(1)/(2)MeCN (2), and [Pb(2)(L)](ClO(4))(2).2MeCN (4). In 1 and 2, the phenolate O-donors do not bridge the two metal centers, which are, therefore, segregated each within an N(5)O-donor compartment. However, in the case of the binuclear complex [Pb(2)(L)](ClO(4))(2).2MeCN (4), the two Pb(II) centers are bridged by the phenolate oxygen atoms with each metal ion sited within an N(5)O(2)-donor compartment of L(2)(-), with a Pb.Pb distance of 3.9427(5) A.  相似文献   

18.
Three new metal-coordinating ligands, L(1)·4HCl [1-(2-guanidinoethyl)-1,4,7-triazacyclononane tetrahydrochloride], L(2)·4HCl [1-(3-guanidinopropyl)-1,4,7-triazacyclononane tetrahydrochloride], and L(3)·4HCl [1-(4-guanidinobutyl)-1,4,7-triazacyclononane tetrahydrochloride], have been prepared via the selective N-functionalization of 1,4,7-triazacyclononane (tacn) with ethylguanidine, propylguanidine, and butylguanidine pendants, respectively. Reaction of L(1)·4HCl with Cu(ClO(4))(2)·6H(2)O in basic aqueous solution led to the crystallization of a monohydroxo-bridged binuclear copper(II) complex, [Cu(2)L(1)(2)(μ-OH)](ClO(4))(3)·H(2)O (C1), while for L(2) and L(3), mononuclear complexes of composition [Cu(L(2)H)Cl(2)]Cl·(MeOH)(0.5)·(H(2)O)(0.5) (C2) and [Cu(L(3)H)Cl(2)]Cl·(DMF)(0.5)·(H(2)O)(0.5) (C3) were crystallized from methanol and DMF solutions, respectively. X-ray crystallography revealed that in addition to a tacn ring from L(1) ligand, each copper(II) center in C1 is coordinated to a neutral guanidine pendant. In contrast, the guanidinium pendants in C2 and C3 are protonated and extend away from the Cu(II)-tacn units. Complex C1 features a single μ-hydroxo bridge between the two copper(II) centers, which mediates strong antiferromagnetic coupling between the metal centers. Complexes C2 and C3 cleave two model phosphodiesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenylphosphate (HPNPP), more rapidly than C1, which displays similar reactivity to [Cu(tacn)(OH(2))(2)](2+). All three complexes cleave supercoiled plasmid DNA (pBR 322) at significantly faster rates than the corresponding bis(alkylguanidine) complexes and [Cu(tacn)(OH(2))(2)](2+). The high DNA cleavage rate for C1 {k(obs) = 1.30 (±0.01) × 10(-4) s(-1) vs 1.23 (±0.37) × 10(-5) s(-1) for [Cu(tacn)(OH(2))(2)](2+) and 1.58 (±0.05) × 10(-5) s(-1) for the corresponding bis(ethylguanidine) analogue} indicates that the coordinated guanidine group in C1 may be displaced to allow for substrate binding/activation. Comparison of the phosphate ester cleavage properties of complexes C1-C3 with those of related complexes suggests some degree of cooperativity between the Cu(II) centers and the guanidinium groups.  相似文献   

19.
The copper(II) complexes [Cu(4)(1,3-tpbd)(2)(H(2)O)(4)(NO(3))(4)](n)(NO(3))(4n)·13nH(2)O (1), [Cu(4)(1,3-tpbd)(2)(AsO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (2), [Cu(4)(1,3-tpbd)(2)(PO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (3), [Cu(2)(1,3-tpbd){(PhO)(2)PO(2)}(2)](2)(ClO(4))(4) (4), and [Cu(2)(1,3-tpbd){(PhO)PO(3)}(2)(H(2)O)(0.69)(CH(3)CN)(0.31)](2)(BPh(4))(4)·Et(2)O·CH(3)CN (5) [1,3-tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-benzenediamine, BPh(4)(-) = tetraphenylborate] were prepared and structurally characterized. Analyses of the magnetic data of 2, 3, 4, and [Cu(2)(2,6-tpcd)(H(2)O)Cl](ClO(4))(2) (6) [2,6-tpcd = 2,6-bis[bis(2-pyridylmethyl)amino]-p-cresolate] show the occurrence of weak antiferromagnetic interactions between the copper(II) ions, the bis-terdentate 1,3-tpbd/2,6-tpcd, μ(4)-XO(4) (X = As and P) μ(1,2)-OPO and μ-O(phenolate) appearing as poor mediators of exchange interactions in this series of compounds. Simple orbital symmetry considerations based on the structural knowledge account for the small magnitude of the magnetic couplings found in these copper(II) compounds.  相似文献   

20.
Five new Zn(II)/Cd(II) coordination polymers constructed from di(1H-imidazol-1-yl)methane (L) mixed with different auxiliary carboxylic acid ligands formulated as [Zn(L)(H(2)L(1))(2)·(H(2)O)(0.2)](n) (1), {[Zn(L)(L(2))]·H(2)O}(n) (2), {[Cd(2)(L)(2)(L(2))(2)]·2H(2)O}(n) (3), {[Cd(L)(L(3))]·H(2)O}(n) (4) and [Cd(L)(L(4))](n) (5) (H(3)L(1) = 1,3,5-benzenetricarboxylic acid, H(2)L(2) = 4,4'-oxybis(benzoic acid), H(2)L(3) = m-phthalic acid and H(2)L(4) = p-phthalic acid) have been synthesized under hydrothermal conditions and structurally characterized. Four related auxiliary carboxylic acids were chosen to examine the influences on the construction of these coordination frameworks with distinct dimensionality and connectivity. The coordination arrays of 1-5 vary from 1D zigzag chain for 1, 2D (4,4) layer for 2-4, to 2-fold interpenetrated 3D coordination network with the α-Po topology for 5. The thermal and photoluminescence properties of complexes 1-5 in the solid state have also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号