首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Reactions of TabHPF(6) (Tab = 4-(trimethylammonio)benzenethiolate) with three equiv. of M(OAc)(2)·2H(2)O (M = Zn, Cd) gave rise to two tetranuclear adamantane-like compounds, [M(4)(μ-Tab)(6)(Tab)(4)](PF(6))(8)·S (·S: M = Zn, S = DMF·4H(2)O; ·S: M = Cd, S = DMF·5H(2)O). The similar reactions of MCl(2) (M = Zn, Cd, Hg) with four equiv. of TabHPF(6) in the presence of Et(3)N afforded three mononuclear compounds [M(Tab)(4)](PF(6))(2)·S (·S: M = Zn, S = 2(H(2)O)(0.5); ·S: M = Cd, S = 2(H(2)O)(0.5); ·S: M = Hg, S = 2DMF). Treatment of the precursor complex or with equimolar MCl(2) and two equiv. of TabHPF(6) and Et(3)N produced one dinuclear compounds [M(μ-Tab)(Tab)(2)](2)(PF(6))(4)·2DMF·2H(2)O (·2DMF·2H(2)O: M = Zn; ·2DMF·2H(2)O: M = Hg) while analogous reactions of with CdCl(2)·2H(2)O gave rise to [Cd(μ-Tab)(2)(Tab)](2)(PF(6))(4)·2DMF (·2DMF). These compounds were characterized by elemental analysis, IR spectra, UV-Vis spectra, (1)H NMR and single-crystal X-ray crystallography. In or , four M(2+) ions and six S atoms of Tab ligands constitute an adamantane-like [M(4)(μ-S)(6)] cage in which each M(2+) ion is tetrahedrally coordinated by one terminal S and three bridged S atoms from four different Tab ligands. In , each M(2+) center of the [M(Tab)(4)](2+) dication is tetrahedrally coordinated by four S atoms of Tab ligand. Two [M(Tab)(2)](2+) dications in or are further bridged by a pair of Tab ligands to form a dimeric [M(μ-Tab)(Tab)(2)](2)(4+) structure. Each dimeric [(Tab)Cd(μ-Tab)(2)Cd(Tab)](4+) unit in is linked to its two neighboring units via two couples of bridging Tab ligands, thereby generating a unique 1D cationic chain. These results may provide useful information on interpreting structural data of MTs containing group 12 metals.  相似文献   

2.
Reactions of a gold(i) thiolate complex [Au(Tab)(2)](2)(PF(6))(2) (Tab = 4-(trimethylammonio)benzenethiolate) with equimolar 1,2-bis(diphenylphosphine)ethane (dppe), 1,3-bis-(diphenylphosphine)propane (dppp) or 1,4-bis-(diphenylphosphine)butane (dppb) in MeOH-DMF-CH(2)Cl(2) gave rise to three polymeric complexes [Au(2)(Tab)(2)(dppe)](2)(PF(6))(4)·2MeOH (1·2MeOH), [Au(2)(Tab)(2)(dppp)]Cl(2)·0.5MeOH·4H(2)O (2·0.5MeOH·4H(2)O), and [Au(4)(μ-Tab)(2)(Tab)(2)(dppb)](PF(6))(4)·4DMF (3·4DMF), respectively. Analogous reaction of 1 with dppb in DMF/C(2)H(4)Cl(2) produced one tetranuclear complex [Au(2)(μ-Tab)(Tab)(2)](2)Cl(4)·2DMF·4H(2)O (4·2DMF·4H(2)O). Complexes 1-4 were characterized by elemental analysis, IR spectra, UV-vis spectra, (1)H and (31)P{(1)H} NMR and single crystal X-ray analysis. Compounds 1 and 2 consist of [Au(Tab)](2) dimeric fragments that are bridged by dppe or dppp ligands to form a 1D linear chain extending along the a axis. For 3, each [Au(4)(Tab)(2)(μ-Tab)(2)] fragment is linked by a pair of dppb ligands to afford another 1D chain extending along the c axis. For 4, the four [Au(Tab)](+) fragments are linked by two Au-Au bonds and two doubly bridging Tab ligands to form a {[Au(Tab)](4)(μ-Tab)(2)} chair-like cyclohexane structure. Hydrogen-bonding interactions in 2 and 4 lead to the formation of interesting 2D hydrogen-bonded networks. The luminescent properties of 1-4 in solid state were also investigated.  相似文献   

3.
We report the synthesis of free 1,6,7,12-tetraazaperylene (tape). Tape was obtained from 1,1'-bis-2,7-naphthyridine by potassium promoted cyclization followed by oxidation with air. Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes of the general formulas [Ru(L-L)(2)(tape)](PF(6))(2), [1](PF(6))(2)-[5](PF(6))(2), and [{Ru(L-L)(2)}(2)(μ-tape)](PF(6))(4), [6](PF(6))(4)-[10](PF(6))(4), with{L-L = phen, bpy, dmbpy (4,4'-dimethyl-2,2'-bipyridine), dtbbpy (4,4'-ditertbutyl-2,2'-bipyridine) and tmbpy (4,4'5,5'-tetramethyl-2,2'-bipyridine)}, respectively, were synthesized. The X-ray structures of tape·2CHCl(3) and the mononuclear complexes [Ru(bpy)(2)(tape)](PF(6))(2)·0.5CH(3)CN·0.5toluene, [Ru(dmbpy)(2)(tape)](PF(6))(2)·2toluene and [Ru(dtbbpy)(2)(tape)](PF(6))(2)·3acetone·0.5H(2)O were solved. The UV-vis absorption spectra and the electrochemical behavior of the ruthenium(ii) tape complexes were explored and compared with the data of the analogous dibenzoeilatin (dbneil), 2,2'-bipyrimidine (bpym) and tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazin (tpphz) species.  相似文献   

4.
In the present study the interaction of Fe(II) and Ni(II) with the related expanded quaterpyridines, 1,2-, 1,3- and 1,4-bis-(5'-methyl-[2,2']bipyridinyl-5-ylmethoxy)benzene ligands (4-6 respectively), incorporating flexible, bis-aryl/methylene ether linkages in the bridges between the dipyridyl domains, was shown to predominantly result in the assembly of [M(2)L(3)](4+) complexes; although with 4 and 6 there was also evidence for the (minor) formation of the corresponding [M(4)L(6)](8+) species. Overall, this result contrasts with the behaviour of the essentially rigid 'parent' quaterpyridine 1 for which only tetrahedral [M(4)L(6)](8+) cage species were observed when reacted with various Fe(II) salts. It also contrasts with that observed for 2 and 3 incorporating essentially rigid substituted phenylene and biphenylene bridges between the dipyridyl domains where reaction with Fe(II) and Ni(II) yielded both [M(2)L(3)](4+) and [M(4)L(6)](8+) complex types, but in this case it was the latter species that was assigned as the thermodynamically favoured product type. The X-ray structures of the triple helicate complexes [H(2)O?Ni(2)(4)(3)](PF(6))(4)·THF·2.2H(2)O, [Ni(2)(6)(3)](PF(6))(4)·1.95MeCN·1.2THF·1.8H(2)O, and the very unusual triple helicate PF(6)(-) inclusion complex, [(PF(6))?Ni(2)(5)(3)](PF(6))(3)·1.75MeCN·5.25THF·0.25H(2)O are reported.  相似文献   

5.
The reactions of bidentate diimine ligands (L2) with cationic bis(diimine)[Ru(L)(L1)(CO)Cl]+ complexes (L, L1, L2 are dissimilar diimine ligands), in the presence of trimethylamine-N-oxide (Me3NO) as a decarbonylation reagent, lead to the formation of heteroleptic tris(diimine) ruthenium(II) complexes, [Ru(L)(L1)(L2)]2+. Typically isolated as hexafluorophosphate or perchlorate salts, these complexes were characterised by UV-visible, infrared and mass spectroscopy, cyclic voltammetry, microanalyses and NMR spectroscopy. Single crystal X-ray studies have elucidated the structures of K[Ru(bpy)(phen)(4,4'-Me(2)bpy)](PF(6))(3).1/2H(2)O, [Ru(bpy)(5,6-Me(2)phen)(Hdpa)](ClO(4))(2), [Ru(bpy)(phen)(5,6-Me(2)phen)](ClO(4))(2), [Ru(bpy)(5,6'-Me(2)phen)(4,4'-Me(2)bpy)](PF(6))(2).EtOH, [Ru(4,4'-Me(2)bpy)(phen)(Hdpa)](PF(6))(2).MeOH and [Ru(bpy)(4,4'-Me(2)bpy)(Hdpa)](ClO(4))(2).1/2Hdpa (where Hdpa is di(2-pyridyl)amine). A novel feature of the first complex is the presence of a dinuclear anionic adduct, [K(2)(PF(6))(6)](4-), in which the two potassium centres are bridged by two fluorides from different hexafluorophosphate ions forming a K(2)F(2) bridging unit and by two KFPFK bridging moieties.  相似文献   

6.
The oxidation state of the chromium center in the following compounds has been probed using a combination of chromium K-edge X-ray absorption spectroscopy and density functional theory: [Cr(phen)(3)][PF(6)](2) (1), [Cr(phen)(3)][PF(6)](3) (2), [CrCl(2)((t)bpy)(2)] (3), [CrCl(2)(bpy)(2)]Cl(0.38)[PF(6)](0.62) (4), [Cr(TPP)(py)(2)] (5), [Cr((t)BuNC)(6)][PF(6)](2) (6), [CrCl(2)(dmpe)(2)] (7), and [Cr(Cp)(2)] (8), where phen is 1,10-phenanthroline, (t)bpy is 4,4'-di-tert-butyl-2,2'-bipyridine, and TPP(2-) is doubly deprotonated 5,10,15,20-tetraphenylporphyrin. The X-ray crystal structures of complexes 1, [Cr(phen)(3)][OTf](2) (1'), and 3 are reported. The X-ray absorption and computational data reveal that complexes 1-5 all contain a central Cr(III) ion (S(Cr) = (3)/(2)), whereas complexes 6-8 contain a central low-spin (S = 1) Cr(II) ion. Therefore, the electronic structures of 1-8 are best described as [Cr(III)(phen(?))(phen(0))(2)][PF(6)](2), [Cr(III)(phen(0))(3)][PF(6)](3), [Cr(III)Cl(2)((t)bpy(?))((t)bpy(0))], [Cr(III)Cl(2)(bpy(0))(2)]Cl(0.38)[PF(6)](0.62), [Cr(III)(TPP(3?-))(py)(2)], [Cr(II)((t)BuNC)(6)][PF(6)](2), [Cr(II)Cl(2)(dmpe)(2)], and [Cr(II)(Cp)(2)], respectively, where (L(0)) and (L(?))(-) (L = phen, (t)bpy, or bpy) are the diamagnetic neutral and one-electron-reduced radical monoanionic forms of L, and TPP(3?-) is the one-electron-reduced doublet form of diamagnetic TPP(2-). Following our previous results that have shown [Cr((t)bpy)(3)](2+) and [Cr(tpy)(2)](2+) (tpy = 2,2':6',2"-terpyridine) to contain a central Cr(III) ion, the current results further refine the scope of compounds that may be described as low-spin Cr(II) and reveal that this is a very rare oxidation state accessible only with ligands in the strong-field extreme of the spectrochemical series.  相似文献   

7.
The reaction of manganese(II) salts with organophosphonic acid [t-BuPO(3)H(2) or cyclopentyl phosphonic acid (C(5)H(9)PO(3)H(2))] in the presence of ancillary nitrogen ligands [1,10-phenanthroline (phen) or 2,6-bis(pyrazol-3-yl)pyridine (dpzpy)], afforded, depending on the stoichiometry of the reactants and the reaction conditions, dinuclear, trinuclear, and tetranuclear compounds, [Mn(2)(t-BuPO(3)H)(4)(phen)(2)]·2DMF (1), [Mn(3)(C(5)H(9)PO(3))(2)(phen)(6)](ClO(4))(2)·7CH(3)OH (2), [Mn(3)(t-BuPO(3))(2)(dpzpy)(3)](ClO(4))(2)·H(2)O (3), [Mn(4)(t-BuPO(3))(2)(t-BuPO(3)H)(2)(phen)(6)(H(2)O)(2)](ClO(4))(2) (4), and [Mn(4)(C(5)H(9)PO(3))(2)(phen)(8)(H(2)O)(2)](ClO(4))(4) (5). Magnetic studies on 1, 2, and 4 reveal that the phosphonate bridges mediate weak antiferromagnetic interactions between the Mn(II) ions have also been carried out.  相似文献   

8.
As an extension of prior studies involving the linear quaterpyridine ligand, 5,5'-dimethyl-2,2':5',5':2',2'-quaterpyridine 1, the synthesis of the related expanded quaterpyridine derivatives 2 and 3 incorporating dimethoxy-substituted 1,4-phenylene and tetramethoxy-substituted 4,4'-biphenylene bridges between pairs of 2,2'-bipyridyl groups has been carried out via double-Suzuki coupling reactions between 5-bromo-5'-methyl-2'-bipyridine and the appropriate di-pinacol-diboronic esters using microwave heating. Reaction of 2 and 3 with selected Fe(II) or Ni(II) salts yields a mixture of both [M(2)L(3)](4+) triple helicates and [M(4)L(6)](8+) tetrahedra, in particular cases the ratio of the products formed was shown to be dependent on the reaction conditions; the respective products are all sufficiently inert to allow their chromatographic separation and isolation. Longer reaction times and higher concentrations were found to favour tetrahedron formation. The X-ray structures of solvated [Ni(2)(2)(3)](PF(6))(4), [(PF(6)) ? Fe(4)(2)(6)](PF(6))(7), [Fe(4)(3)(6)](PF(6))(8) and [Ni(4)(3)(6)](PF(6))(8) have been determined, while the structure of the parent Fe(II) cage in the series, [(PF(6)) ? Fe(4)(1)(6)](PF(6))(7), was reported previously. The internal volumes of the Fe(II) tetrahedral cages have been calculated and increase from 102 ?(3) for [Fe(4)(1)(6)](8+) to 227 ?(3) for [Fe(4)(2)(6)](8+) to 417 ?(3) for [Fe(4)(3)(6)](8+) and to an impressive 839 ?(3) for [Ni(4)(3)(6)](8+). The corresponding void volume in the triple helicate [Ni(2)(2)(3)](4+) is 29 ?(3).  相似文献   

9.
Five novel coordination polymers [Zn(2)(OA)(4,4'-bipy)(H(2)O)].0.5(4,4'-bipy), [Zn(2)(OA)(dib)(H(2)O)].H(2)O, [Zn(2)(OA)(bbi)(2)].3H(2)O, [Zn(2)(OA)(phen)(2)(H(2)O)] and [Zn(4)(OA)(2)(2,2'-bipy)(2)(H(2)O)].2H(2)O were obtained by hydrothermal reactions of Zn(NO(3))(2).6H(2)O with a V-shaped multicarboxylate ligand 3,3',4,4'-oxydiphthalic acid (H(4)OA) and a series of N-donor ligands, namely 4,4'-bipyridine (4,4'-bipy), 1,4-di(1-imidazolyl)benzene (dib), 1,1'-(1,4-butanediyl)bis(imidazole) (bbi), 1,10-phenanthroline (phen), 2,2'-bipyridine (2,2'-bipy). The structures of the complexes were established by single-crystal X-ray diffraction analysis. Complex exhibits a robust 3D porous structure with uncoordinated 4,4'-bipy molecules filling the cavities. Complexes and show a complicated 3D framework, while complexes and have a 2D network and a 1D helical chain structure, respectively. The results indicate that the multicarboxylate OA(4-) ligand can adopt varied coordination modes in the formation of the complexes and the influence of the N-donor ligand on the structure of the complexes is discussed. The photoluminescence properties of H(4)OA and were studied in the solid state at room temperature. Moreover, nonlinear optical measurements showed that displayed a second-harmonic-generation (SHG) response of 0.5 times of that for urea. The results suggested that the configuration and flexibility of the ligands play a key role in directing the related properties of the complexes.  相似文献   

10.
Jia D  Zhao J  Pan Y  Tang W  Wu B  Zhang Y 《Inorganic chemistry》2011,50(15):7195-7201
The polyselenidoarsenates [Fe(phen)(3)][As(2)Se(6)] (1), [Zn(phen)(dien)][As(2)Se(6)]·2phen (2), [{Mn(phen)(2)}(2)(μ-η(2),η(2)-AsSe(4))](2)[As(2)Se(6)]·H(2)O (3), and [Ni(phen)(3)][As(2)Se(2)(μ-Se(3))(μ-Se(5))] (4) (dien = diethylenetriamine and phen = 1,10-phenanthroline) were prepared by the reaction of As(2)O(3), Se, dien, and phen in the presence of transition metals in a methanol solvent under solvothermal conditions. Compounds 1-3 consist of [As(2)Se(6)](2-) anions with [Fe(phen)(3)](2+), [Zn(phen)(dien)](2+), and [{Mn(phen)(2)}(2)(μ-η(2),η(2)-AsSe(4))](+) complex counter cations, respectively. The [As(2)Se(6)](2-) anion is formed from two As(III)Se(3) trigonal pyramids linked through two Se-Se bonds. Compound 3 is the first example of a mixed-valent selenidoarsenate(III,V) and exhibits the coexistence of As(III)Se(3) trigonal pyramidal and As(V)Se(4) tetrahedral units. Compound 4 is composed of a helical chain of [As(2)Se(2)(μ-Se(3))(μ-Se(5))(2-)](∞) and octahedral [Ni(phen)(3)](2+) cations. The [As(2)Se(2)(μ-Se(3))(μ-Se(5))(2-)](∞) chain is constructed from AsSe(+) units alternatively linked by μ-Se(3)(2-) and μ-Se(5)(2-) bridging ligands. When the structures of compounds 1-4 are compared, the transition metal ions show different structural directing effects during the synthesis of arsenic polyselenides in methanol. Compounds 1, 2, 3, and 4 exhibit semiconducting properties with band gaps of 1.88, 2.29, 1.82, and 2.01 eV, respectively.  相似文献   

11.
The exploration in two hydro(solvo)thermal reaction systems As/S/Mn(2+)/phen/methylamine aqueous solution and As/S/Mn(2+)/2,2'-bipy/H(2)O affords five new manganese thioarsenates with diverse structures, namely, (CH(3)NH(3)){[Mn(phen)(2)](As(V)S(4))}·phen (1 and 1'), (CH(3)NH(3))(2){[Mn(phen)](2)(As(V)S(4))(2)} (2), {[Mn(phen)(2)](As(III)(2)S(4))}(n) (3), {[Mn(phen)](3)(As(III)S(3))(2)}·H(2)O (4), and {[Mn(2,2'-bipy)(2)](2)(As(V)S(4))}[As(III)S(S(5))] (5). Compound 1 comprises a {[Mn(phen)(2)](As(V)S(4))}(-) complex anion, a monoprotonated methylamine cation and a phen molecule. Compound 2 contains a butterfly like {[Mn(phen)](2)(As(V)S(4))(2)}(2-) anion charge compensated by two monoprotonated methylamine cations. Compound 3 is a neutral chain formed by a helical (1)(∞)(As(III)S(2)(-)) vierer chain covalently bonds to [Mn(II)(phen)](2+) complexes via all its terminal S atoms. Compound 4 features a neutral chain showing the stabilization of noncondensed (As(III)S(3))(3-) anions in the coordination of [Mn(II)(phen)](2+) complex cations. Compound 5 features a mixed-valent As(III)/As(V) character and an interesting chalcogenidometalates structure, where a polycation formed by the connection of two [Mn(2,2'-bipy)(2)](2+) complex cation and a (As(V)S(4))(3-) anion acts as a countercation for a polythioarsenate anion, [As(III)S(S(5))](-). The title compounds exhibit optical gaps in the range 1.58-2.48 eV and blue photoluminescence. Interestingly, compound 1 displays a weak second harmonic generation (SHG) response being about 1/21 times of KTP (KTiOPO(4)). Magnetic measurements show paramagnetic behavior for 1 and dominant antiferromagnetic behavior for 2-5. Of particular interest is 4, which is the first manganese chalcogenide showing spin-canting characteristic.  相似文献   

12.
The synthesis and the characterization of new dinuclear copper(II) compounds of general formula [(L(a-d))(2)Cu(2)(μ-N-N)](ClO(4))(2) (1-6) with either neutral aliphatic diamine (N-N = piperazine, pip) or aromatic diimine (N-N = 4,4'-bipyridine, 4,4'-bipy) linker are reported. The copper ligands L(-) (L(a-) = (E)-2-((2-aminoethylimino)methyl)phenolate, L(b-) = (E)-2-((2-aminopropylimino)methyl)-phenolate, L(c-) = (E)-2-((2-aminoethylimino)methyl)4-nitrophenolate, L(d-) = (E)-2-((2-aminoethylimino)methyl)4-methoxyphenolate) are NNO tridentate Schiff bases derived from the monocondensation of a substituted salicylaldehyde 5-G-salH (G = NO(2), H, OMe) with ethylenediamine, en, or 1,3-propylenediamine, tn. The crystal structures of compounds [(L(a))(2)Cu(2)(MeOH)(2)(μ-4,4'-bipy)](ClO(4))(2) (1·2MeOH), [(L(b))(2)Cu(2)(MeOH)(2)(μ-4,4'-bipy)](ClO(4))(2) (2·2MeOH), [(L(d))(2)Cu(2)(μ-4,4'-bipy)](ClO(4))(2) (4), [(L(a))(2)Cu(2)(μ-pip)](ClO(4))(2) (5) and [(L(b))(2)Cu(2)(μ-pip)](ClO(4))(2) (6) have been determined, revealing the preferred (e-e)-chair conformation of the bridging piperazine in compounds 5 and 6. The presence of hydrogen-bond-mediated intermolecular interactions, that involve the methanol molecules, yields dimers of dinuclear units for 1·2MeOH, and infinite zig-zag chains for 2·2MeOH. The temperature dependences of the magnetic susceptibilities χ(M)(T) for all compounds were measured, indicating the presence of antiferromagnetic Cu-Cu exchange. For the compounds 2-4 with 4,4'-bipy, the coupling constants J are around -1 cm(-1), while in compound 1 no interaction could be detected. The compounds 5 and 6 with piperazine display higher Cu-Cu magnetic interactions through the σ-bonding backbone of the bridging molecule, with J around -8 cm(-1), and the coupling is favoured by the (e-e)-chair conformation of the diamine ring. The non-aromatic, but shorter, linker piperazine gives rise to stronger Cu-Cu antiferromagnetic couplings than the aromatic, but longer, 4,4'-bipyridine. In the latter case, the rotation along the C-C bond between the two pyridyl rings and the consequent non co-planarity of the two copper coordination planes play an important role in determining the magnetic communication. EPR studies reveal that the dinuclear species are not stable in solution, yielding the solvated [(L)Cu(MeOH)](+) and the mononuclear [(L)Cu(N-N)](+) species; it appears that the limited solubility of the dinuclear compounds is responsible for their isolation in the solid state.  相似文献   

13.
Silver(I) coordination complexes with the versatile and biomimetic ligands 1,2,4-triazolo[1,5-a]pyrimidine (tp), 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) and 7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7atp) all feature dinuclear [Ag(2)(μ-tp)(2)](2+) building units (where tp is a triazolopyrimidine derivative), which are the preferred motif, independently of the counter-anion used. According to AIM (atoms in molecules) and ELF (electron localization function) analyses, this fact is due to the great stability of these dinuclear species. The complexes structures range from the dinuclear entities [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](BF(4))(2) (1), [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](ClO(4))(2) (2), [Ag(2)(μ-7atp)(2)](ClO(4))(2) (3) and [Ag(2)(μ-dmtp)(2)(CH(3)CN)](PF(6))(ClO(4)) (4) over the 1D polymer chain [Ag(2)(μ-CF(3)SO(3))(2)(μ-dmtp)(2)](n) (5) to the 3D net {[Ag(2)(μ(3)-tp)(2)](PF(6))(2)·~6H(2)O}(n) (6) with NbO topology.  相似文献   

14.
The hydrophilic, long-chain diamine PEGda (O,O'-bis(2-aminoethyl)octadeca(ethylene glycol)), when complexed with cis-protected Pt(II) ions afforded water-soluble complexes of the type [Pt(N,N)(PEGda)](NO(3))(2) (N,N = N,N,N',N'-tetramethyl-1,2-diaminoethane (tmeda), 1,2-diaminoethane (en), and 2,2'-bipyridine (2,2'-bipy)) featuring unusual 62-membered chelate rings. Equimolar mixtures containing either the 16-mer duplex DNA D2 or the single-stranded D2a and [Pt(N,N)(PEGda)](2+) were analyzed by negative-ion ESI-MS. Analysis of D2-Pt(II) mixtures showed the formation of 1 : 1 adducts of [Pt(en)(PEGda)](2+), [Pt(tmeda)(PEGda)](2+) and the previously-described metallomacrocycle [Pt(2)(2,2'-bipy)(2){4,4'-bipy(CH(2))(4)4,4'-bipy}(2)](8+) with D2; the dinuclear species bound to D2 most strongly, consistent with its greater charge and aromatic surface area. D2 formed 1 : 2 complexes with the acyclic species [Pt(2,2'-bipy)(Mebipy)(2)](4+) and [Pt(2,2'-bipy)(NH(3))(2)](2+). Analyses of D2a-Pt(II) mixtures gave results similar to those obtained with D2, although fragmentation was more pronounced, indicating that the nucleobases in D2a play more significant roles in mediating the decomposition of complexes than those in D2, in which they are paired in a complementary manner. Investigations were also conducted into the effects of selected platinum(II) complexes on the thermal denaturation of calf thymus DNA (CT-DNA) in buffered solution. Both [Pt(2)(2,2'-bipy)(2){4,4'-bipy(CH(2))(6)4,4'-bipy}(2)](8+) and [Pt(2,2'-bipy)(Mebipy)(2)](4+) stabilized CT-DNA. In contrast, [Pt(tmeda)(PEGda)](2+) and [Pt(en)(PEGda)](2+) (as well as free PEGda) caused negligible changes in melting temperature (ΔT(m)), suggesting that these species interact weakly with CT-DNA.  相似文献   

15.
Air-stable rhenium(V) oxo complexes are formed when [ReOCl(3)(PPh(3))(2)] is treated with N-heterocyclic carbenes of the 1,3-dialkyl-4,5-dimethylimidazol-2-ylidene type, L(R) (R = Me, Et, i-Pr). Complexes of the compositions [ReO(2)(L(R))(4)](+), [ReOCl(L(R))(4)](2+), or [ReO(OMe)(L(R))(4)](2+) can be isolated depending on the alkyl substituents at the nitrogen atoms of the ligands and the reaction conditions applied. Despite the steric overcrowding of the equatorial coordination spheres of the metal atoms by each of the four carbene ligands, stable complexes with six-coordinate rhenium atoms are obtained. Steric demands of the alkyl groups allow control of the stability of the mono-oxo intermediates. Air-stable cationic complexes of the compositions [ReOCl(L(Me))(4)](2+), [ReOCl(L(Et))(4)](2+), and [ReO(OMe)(L(Me))(4)](2+) have been isolated, whereas reactions of [ReOCl(3)(PPh(3))(2)] or other rhenium(V) precursors with the more bulky 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (L(i)(-)(Pr)) directly yield the dioxo complex [ReO(2)(L(i)(-)(Pr))(4)](+). X-ray structures of [ReO(2)(L(i)(-)(Pr))(4)][ReO(4)], [ReO(2)(L(i)(-)(Pr))(4)][PF(6)], [ReO(2)(L(Me))(4)][ReO(4)](0.45)[PF(6)](0.55), [ReO(MeOH)(L(Me))(4)][PF(6)](2), and [ReOCl(L(Et))(4)][PF(6)](2) show that the equatorial coordination spheres of the rhenium atoms are essentially planar irrespective of the steric demands of the individual carbene ligands.  相似文献   

16.
Two series of novel complexes, [Ln(dca)(2)(Phen)(2)(H(2)O)(3)](dca).(phen) (Ln = Pr (1), Gd (2), and Sm (3), dca = N(CN)(-), phen = 1,10-phenanthroline) and [Ln(dca)(3)(2,2'-bipy)(2)(H(2)O)](n), (Ln = Gd (4), Sm (5), and La (6), 2,2'-bipy = 2,2'-bipydine), have been synthesized and structurally characterized by X-ray crystallography. The crystal structures of the first series (1-3) are isomorphous and consist of discrete [Ln(dca)(2)(Phen)(2)(H(2)O)(3)]+ cations, dca anions, and lattice phen molecules; whereas the structures of the second series (4-6) are characterized by infinite chains [Ln(dca)(3)(2,2'-bipy)(2)(H(2)O)](n). The Ln(III) atoms in all complexes are nine-coordinated and form a distorted tricapped trigonal prism environment. The three-dimensional frameworks of 1-6 are constructed by intermolecular hydrogen bond interactions. Variable-temperature magnetic susceptibility measurements for complexes 1, 2, 4, and 5 indicate a Curie-Weiss paramagnetic behavior over 5-300 K.  相似文献   

17.
Qin L  Yao LY  Yu SY 《Inorganic chemistry》2012,51(4):2443-2453
Fluorescent carbazole-based dipyrazole ligands (H(2)L(1-4)) were employed to coordinate with dipalladium corners ([(phen)(2)Pd(2)(NO(3))(2)](NO(3))(2), [(dmbpy)(2)Pd(2)(NO(3))(2)](NO(3))(2), or [(15-crown-5-phen)(2)Pd(2)(NO(3))(2)](NO(3))(2), where phen = 1,10-phenanthroline and dmbpy = 4,4'-dimethyl-2,2'-bipyridine, in aqueous solution to afford a series of positively charged [M(8)L(4)](8+) or [M(4)L(2)](4+) multimetallomacrocycles with remarkable water solubility. Their structures were characterized by (1)H NMR spectroscopy, electrospray ionization mass spectrometry, and elemental analysis and in the cases of 1·8BF(4)(-) ([(phen)(8)Pd(8)L(1)(4)](BF(4))(8)), and 3·4BF(4)(-) ([(phen)(4)Pd(4)L(2)(2)](BF(4))(4)) by single-crystal X-ray diffraction analysis. Complexes 3-8 are square-type hybrid metallomacrocycles, while complexes 1 and 2 exhibit folding cyclic structures. Interestingly, in single-crystal structures of 1·8BF(4)(-) and 3·4BF(4)(-), BF(4)(-) anions are trapped in the dipalladium clips through anion-π interaction. The luminescence properties and interaction toward anions of these metallomacrocycles were discussed.  相似文献   

18.
We report two new synthetic routes to the dinuclear Ru(I) complexes, [Ru(I)(2)(RCO(2))(CO)(4)(N( wedge )N)(2)](+) (N( wedge )N = 2,2'-bipyridine or 1,10-phenanthroline derivatives) that use RuCl(3).3H(2)O as a starting material. Direct addition of the bidentate diimine ligand to a methanolic solution of [Ru(CO)(2)Cl(2)](n) and sodium acetate yielded a mixture of [Ru(I)(2)(MeCO(2))(CO)(4)(N( wedge )N)(2)](+) (N( wedge )N = 4,4'-dmbpy, and 5,6-dmphen), and [Ru(II)(MeCO(2))(2)(CO)(2)(N( wedge )N)] (N( wedge )N = 4,4'-dmbpy and 5,5'-dmbpy). Single-crystal X-ray studies confirmed that the Ru(II) complexes had a trans-acetate-cis-carbonyl arrangement of the ligands. In contrast, the use of sodium benzoate resulted in the unexpected formation of a Ru-C bond producing ortho-cyclometalated complexes, [Ru(II)(O(2)CC(6)H(4))(CO)(2)(N( wedge )N)], where N( wedge )N = bpy or phen. A second approach used ligand exchange between a bidentate ligand (N( wedge )N) and the pyridine ligands of [Ru(I)(RCO(2))(CO)(2)(py)](2) to convert these neutral complexes into [Ru(I)(2)(RCO(2))(CO)(4)(N( wedge )N)(2)](+). This method, although it involved more steps, was applicable for a wider variety of diimine ligands (R = Me and N( wedge )N = 4,4'-dmbpy, 5,5'-dmbpy, 5,6-dmphen; R = Ph and N( wedge )N = bpy, phen, 5,6-dmphen).  相似文献   

19.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

20.
The tricarbonyl [Mn(CO)(3){HC(pz')(3)}][PF(6)] 1(+)[PF(6)](-) (pz' = 3,5-dimethylpyrazolyl) reacts with a range of P-, N- and C-donor ligands, L, in the presence of trimethylamine oxide to give [Mn(CO)(2)L{HC(pz')(3)}](+) {L = PEt(3)3(+), P(OEt)(3)4(+), P(OCH(2))(3)CEt 5(+), py 6(+), MeCN 7(+), CNBu(t)8(+) and CNXyl 9(+)}. The complex [Mn(CO)(2)(PMe(3)){HC(pz')(3)}](+)2(+) is formed by reaction of 7(+) with PMe(3). Complexes 2(+) and 6(+) were structurally characterised by X-ray diffraction methods. Reaction of 7(+) with half a molar equivalent of 4,4'-bipyridine gives a purple compound assumed to be the bridged dimer [{HC(pz')(3)}Mn(CO)(2)(μ-4,4'-bipy)Mn(CO)(2){HC(pz')(3)}](2+)10(2+). The relative electron donating ability of HC(pz')(3) has been established by comparison with the cyclopentadienyl and tris(pyrazolyl)borate analogues. Cyclic voltammetry shows that each of the complexes undergoes an irreversible oxidation. The correlation between the average carbonyl stretching frequency and the oxidation potential for complexes of P- and C-donor ligands is coincident with the correlation observed for [Mn(CO)(3-m)L(m)(η-C(5)H(5-n)Me(n))]. The data for complexes of N-donor ligands, however, are not coincident due to the presence of a node (and phase change) between the metal and the N-donor in the HOMO of the complex as suggested by preliminary DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号