首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The E-characteristic polynomial of an even order supersymmetric tensor is a useful tool in determining the positive definiteness of an even degree multivariate form. In this paper, for an even order tensor, we first establish the formula of its E-characteristic polynomial by using the classical Macaulay formula of resultants, then give an upper bound for the degree of that E-characteristic polynomial. Examples illustrate that this bound is attainable in some low order and dimensional cases.  相似文献   

2.
A new approach to describe the failure hypersurface on the basis of assumptions presented in Part A reveals the new form of failure stress polynomial. In the presented theory new terms such as: unit tensor object, object formed on the basis of unit tensor object, the first, second and third form of the anisotropy failure function, and the first and the second type of object axis, were defined. On the basis of these terms the coefficients of their polynomials were formulated as values of the appropriate objects. The presented theory divides the six dimensional hyperspace of stresses into eight parts in which eight intersected hypersurfaces constitute the failure hypersurface. Six hypersurfaces may be assigned to two of three mutually coupled sets of elements. In general cases the theory may be used to describe the failure hypersurface for anisotropic structures where tensorial relationships do not occur. The obtained polynomial is transformed to tensor polynomial on the assumption that the failure stress tensorial relationships describe the failure hypersurface of anisotropic materials.  相似文献   

3.
Third order three-dimensional symmetric and traceless tensors play an important role in physics and tensor representation theory. A minimal integrity basis of a third order three-dimensional symmetric and traceless tensor has four invariants with degrees two, four, six, and ten, respectively. In this paper, we show that any minimal integrity basis of a third order three-dimensional symmetric and traceless tensor is also an irreducible function basis of that tensor, and there is no syzygy relation among the four invariants of that basis, i.e., these four invariants are algebraically independent.  相似文献   

4.
Saeid Azam 《代数通讯》2013,41(3):905-927
It is known that under certain finite dimensionality condition the derivation algebra of tensor product of two algebras can be obtained in terms of the derivation algebras and the centroids of the involved algebras. We extend this theorem to infinite dimensional case and as an application, we determine the derivation algebra of the fixed point algebra of the tensor product of two algebras, with respect to the tensor product of two finite order automorphisms. These provide the framework for calculating the derivations of some infinite dimensional Lie algebras.  相似文献   

5.
In this paper, we propose a new scheme that combines weighted essentially non‐oscillatory (WENO) procedures together with monotone upwind schemes to approximate the viscosity solution of the Hamilton–Jacobi equations. In one‐dimensional (1D) case, first, we obtain an optimum polynomial on a four‐point stencil. This optimum polynomial is third‐order accurate in regions of smoothness. Next, we modify a second‐order ENO polynomial by choosing an additional point inside the stencil in order to obtain the highest accuracy when combined with the Harten–Osher reconstruction‐evolution method limiter. Finally, the optimum polynomial is considered as a symmetric and convex combination of three polynomials with ideal weights. Following the methodology of the classic WENO procedure, then, we calculate the non‐oscillatory weights with the ideal weights. Numerical experiments in 1D and 2D are performed to compare the capability of the hybrid scheme to WENO schemes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a coupled system of three dimensional nonlinear partial differential equations with initial-boundary value problems. In this paper, according to the actual conditions of molecular and three-dimensional characteristic of the problem, we construct the characteristic finite element alternating-direction schemes which can be divided into three continuous one-dimensional problems. By making use of tensor product algorithm, and priori estimation theory and techniques, the optimal order estimates in H1 norm are derived for the error in the approximate solution.  相似文献   

7.
Ritz-Galerkin approximations in blending function spaces   总被引:1,自引:0,他引:1  
Summary This paper considers the theoretical development of finite dimensional bivariate blending function spaces and the problem of implementing the Ritz-Galerkin method in these approximation spaces. More specifically, the approximation theoretic methods of polynomial blending function interpolation and approximation developed in [2, 11–13] are extended to the general setting of L-splines, and these methods are then contrasted with familiar tensor product techniques in application of the Ritz-Galerkin method for approximately solving elliptic boundary value problems. The key to the application of blending function spaces in the Ritz-Galerkin method is the development of criteria which enable one to judiciously select from a nondenumerably infinite dimensional linear space of functions, certain finite dimensional subspaces which do not degrade the asymptotically high order approximation precision of the entire space. With these criteria for the selection of subspaces, we are able to derive a virtually unlimited number of new Ritz spaces which offer viable alternatives to the conventional tensor product piecewise polynomial spaces often employed. In fact, we shall see that tensor product spaces themselves are subspaces of blending function spaces; but these subspaces do not preserve the high order precision of the infinite dimensional parent space.Considerable attention is devoted to the analysis of several specific finite dimensional blending function spaces, solution of the discretized problems, choice of bases, ordering of unknowns, and concrete numerical examples. In addition, we extend these notations to boundary value problems defined on planar regions with curved boundaries.  相似文献   

8.
We study average case tractability of non-homogeneous tensor product problems with the absolute error criterion. We consider algorithms that use finitely many evaluations of arbitrary linear functionals. For general non-homogeneous tensor product problems, we obtain the matching necessary and sufficient conditions for strong polynomial tractability in terms of the one-dimensional eigenvalues. We give some examples to show that strong polynomial tractability is not equivalent to polynomial tractability, and polynomial tractability is not equivalent to quasi-polynomial tractability. But for non-homogeneous tensor product problems with decreasing eigenvalues, we prove that strong polynomial tractability is always equivalent to polynomial tractability, and strong polynomial tractability is even equivalent to quasi-polynomial tractability when the one-dimensional largest eigenvalues are less than one. In particular, we find an example that quasi-polynomial tractability with the absolute error criterion is not equivalent to that with the normalized error criterion even if all the one-dimensional largest eigenvalues are one. Finally we consider a special class of non-homogeneous tensor product problems with improved monotonicity condition of the eigenvalues.  相似文献   

9.
We present a high‐order spectral element method (SEM) using modal (or hierarchical) basis for modeling of some nonlinear second‐order partial differential equations in two‐dimensional spatial space. The discretization is based on the conforming spectral element technique in space and the semi‐implicit or the explicit finite difference formula in time. Unlike the nodal SEM, which is based on the Lagrange polynomials associated with the Gauss–Lobatto–Legendre or Chebyshev quadrature nodes, the Lobatto polynomials are used in this paper as modal basis. Using modal bases due to their orthogonal properties enables us to exactly obtain the elemental matrices provided that the element‐wise mapping has the constant Jacobian. The difficulty of implementation of modal approximations for nonlinear problems is treated in this paper by expanding the nonlinear terms in the weak form of differential equations in terms of the Lobatto polynomials on each element using the fast Fourier transform (FFT). Utilization of the Fourier interpolation on equidistant points in the FFT algorithm and the enough polynomial order of approximation of the nonlinear terms can lead to minimize the aliasing error. Also, this approach leads to finding numerical solution of a nonlinear differential equation through solving a system of linear algebraic equations. Numerical results for some famous nonlinear equations illustrate efficiency, stability and convergence properties of the approximation scheme, which is exponential in space and up to third‐order in time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, we investigate the backward error and perturbation bounds for the high order Sylvester tensor equation (STE). The bounds of the backward error and three types of upper bounds for the perturbed STE with or without dropping the second order terms are presented. The classic perturbation results for the Sylvester equation are extended to the high order case.  相似文献   

11.
Finding the maximum eigenvalue of a tensor is an important topic in tensor computation and multilinear algebra. Recently, for a tensor with nonnegative entries (which we refer it as a nonnegative tensor), efficient numerical schemes have been proposed to calculate its maximum eigenvalue based on a Perron–Frobenius-type theorem. In this paper, we consider a new class of tensors called essentially nonnegative tensors, which extends the concept of nonnegative tensors, and examine the maximum eigenvalue of an essentially nonnegative tensor using the polynomial optimization techniques. We first establish that finding the maximum eigenvalue of an essentially nonnegative symmetric tensor is equivalent to solving a sum of squares of polynomials (SOS) optimization problem, which, in its turn, can be equivalently rewritten as a semi-definite programming problem. Then, using this sum of squares programming problem, we also provide upper and lower estimates for the maximum eigenvalue of general symmetric tensors. These upper and lower estimates can be calculated in terms of the entries of the tensor. Numerical examples are also presented to illustrate the significance of the results.  相似文献   

12.
In this article, we introduce a high‐order accurate method for solving the two dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth order for discretizing spatial derivatives of linear hyperbolic equation and collocation method for the time component. The resulted method is unconditionally stable and solves the two‐dimensional linear hyperbolic equation with high accuracy. In this technique, the solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. Numerical results show that the compact finite difference approximation of fourth order and collocation method give a very efficient approach for solving the two dimensional linear hyperbolic equation. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

13.
In this article, we develop an exponential high order compact alternating direction implicit (EHOC ADI) method for solving three dimensional (3D) unsteady convection–diffusion equations. The method, which requires only a regular seven‐point 3D stencil similar to that in the standard second‐order methods, is second order accurate in time and fourth‐order accurate in space and unconditionally stable. The resulting EHOC ADI scheme in each alternating direction implicit (ADI) solution step corresponding to a strictly diagonally dominant matrix equation can be solved by the application of the one‐dimensional tridiagonal Thomas algorithm with a considerable saving in computing time. Numerical experiments for three test problems are carried out to demonstrate the performance of the present method and to compare it with the classical Douglas–Gunn ADI method and the Karaa's high‐order compact ADI method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

14.
We express a basis for the vector space of finite type invariants of order less than or equal to three for an embedded handcuff graph in a 3-sphere in terms of the linking number, the Conway polynomial, and the Jones polynomial of the sublinks of the handcuff graph.  相似文献   

15.
The objective of the work presented in this paper is an attempt at solving and transforming of the known from the classical mechanics three dimensional – single mass mathematical and mechanical vibration models in a higher order dimensional space with any virtual sectional curvature – positive or negative, constant or variable. The object of the investigation is a class of three dimensional surfaces. The aims of the work presented in this paper are to illustrate the performance of the common algorithm in three dimensional linear motion transformation, that means to transform 3D space in a higher order dimensional space and a comparison is derived on the behavior of the common algorithm depending on the surface properties. A characterization of the Riemannian Manifolds is performed by means of curvature operators in the three dimensional solution. The computer codes Mathematica and MATLAB are used in the numerical simulation. The system motion is investigated in a 3-D qualitative aspect in time and frequency domain. The application can be in topology when geodesists make snap shots of the surface profile, then the curved lines can be analyzed and transformed in the desired space dimension. Any kind of a trajectory of motion can be transformed successfully in a higher order dimensional space and vice verse by means of applying of the common algorithm.  相似文献   

16.
In this paper we study a third order Steffensen type method obtained by controlling the interpolation nodes in the Hermite inverse interpolation polynomial of degree 2. We study the convergence of the iterative method and we provide new convergence conditions which lead to bilateral approximations for the solution; it is known that the bilateral approximations have the advantage of offering a posteriori bounds of the errors. The numerical examples confirm the advantage of considering these error bounds.  相似文献   

17.
In the first part of this paper we compute the Witt ring kernel for an arbitrary field extension of degree 4 and characteristic different from 2 in terms of the coefficients of a polynomial determining the extension. In the case where the lower field is not formally real we prove that the intersection of any power n of its fundamental ideal and the Witt ring kernel is generated by n-fold Pfister forms.In the second part as an application of the main result we give a criterion for the tensor product of quaternion and biquaternion algebras to have zero divisors. Also we solve the similar problem for three quaternion algebras.In the last part we obtain certain exact Witt group sequences concerning dihedral Galois field extensions. These results heavily depend on some similar cohomological results of Positselski, as well as on the Milnor conjecture, and the Bloch-Kato conjecture for exponent 2, which was proven by Voevodsky.  相似文献   

18.
We study the growth of the codimensions of a *-superalgebra over a field of characteristic zero. We classify the ideals of identities of finite dimensional algebras whose corresponding codimensions are of almost polynomial growth. It turns out that these are the ideals of identities of two algebras with distinct involutions and gradings. Along the way, we also classify the finite dimensional simple *-superalgebras over an algebraically closed field of characteristic zero.  相似文献   

19.
This article analyzes the solution of the integrated forms of fourth‐order elliptic differential equations on a rectilinear domain using a spectral Galerkin method. The spatial approximation is based on Jacobi polynomials P (x), with α, β ∈ (?1, ∞) and n the polynomial degree. For α = β, one recovers the ultraspherical polynomials (symmetric Jacobi polynomials) and for α = β = ?½, α = β = 0, the Chebyshev of the first and second kinds and Legendre polynomials respectively; and for the nonsymmetric Jacobi polynomials, the two important special cases α = ?β = ±½ (Chebyshev polynomials of the third and fourth kinds) are also recovered. The two‐dimensional version of the approximations is obtained by tensor products of the one‐dimensional bases. The various matrix systems resulting from these discretizations are carefully investigated, especially their condition number. An algebraic preconditioning yields a condition number of O(N), N being the polynomial degree of approximation, which is an improvement with respect to the well‐known condition number O(N8) of spectral methods for biharmonic elliptic operators. The numerical complexity of the solver is proportional to Nd+1 for a d‐dimensional problem. This operational count is the best one can achieve with a spectral method. The numerical results illustrate the theory and constitute a convincing argument for the feasibility of the method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

20.
In [7], Lyche and Schumaker have described a method for fitting functions of class C 1 on the sphere which is based on tensor products of quadratic polynomial splines and trigonometric splines of order three associated with uniform knots. In this paper, we present a multiresolution method leading to C 2-functions on the sphere, using tensor products of polynomial and trigonometric splines of odd order with arbitrary simple knot sequences. We determine the decomposition and reconstruction matrices corresponding to the polynomial and trigonometric spline spaces. We describe the general tensor product decomposition and reconstruction algorithms in matrix form which are convenient for the compression of surfaces. We give the different steps of the computer implementation of these algorithms and, finally, we present a test example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号