首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
There has been an increasing technological interest on magnetic thin films containing antidot arrays of hexagonal or square symmetry. Part of this interest is related to the possibility of domain formation and pinning at the antidots boundaries. In this paper, we develop an accurate method for the simulation of the magnetic moments distribution for such arrays. The method concentrates the calculations on the immediate vicinity of each antidot. For each antidot distribution (square or hexagonal) a suitable system of coordinates is defined to exploit the shape of the unit-cells of the overall nanostructure. The Landau-Lifshitz-Gilbert-Brown equations that govern the distribution of moments are rewritten in terms of these coordinates. The moments orientation is calculated as a function of time until equilibrium is reached, in a Cartesian grid defined for these new coordinate systems. A conformal transformation is applied to insert the moment vectors into the actual unit-cell. The resulting vector maps display quite clearly regions of different moment orientation around the antidots, which can be associated with nanoscale domains. The results are similar to the ones obtained by other authors [C.C. Wang, A.O. Adeyeye, N. Singh, Nanotechnology 17, 1629 (2006); C.C. Wang, A.O. Adeyeye, N. Singh, Y.S. Huang, Y.H. Hu, Phys. Rev. B 72, 174426 (2005); C.T. Yu, H. Jiang, L. Shen, P. Flanders, G. Mankey, J. Appl. Phys. 87, 6322 (2000); E. Mengotti, L.J. Heyderman, F. Nolting, B.R. Craig, J.N. Chapman, L.L. Diaz, R.J. Matelon, U.G. Volkman, M. Klaui, U. Rudiger, C. Vaz, J. Bland, J. Appl. Phys. 103, 07D509 (2008)] using the NIST oommf method, but obtained in a much simpler and direct way.  相似文献   

2.
Human beings like to believe they are in control of their destiny. This ubiquitous trait seems to increase motivation and persistence, and is probably evolutionarily adaptive [J.D. Taylor, S.E. Brown, Psych. Bull. 103, 193 (1988); A. Bandura, Self-efficacy: the exercise of control (WH Freeman, New York, 1997)]. But how good really is our ability to control? How successful is our track record in these areas? There is little understanding of when and under what circumstances we may over-estimate [E. Langer, J. Pers. Soc. Psych. 7, 185 (1975)] or even lose our ability to control and optimize outcomes, especially when they are the result of aggregations of individual optimization processes. Here, we demonstrate analytically using the theory of Markov Chains and by numerical simulations in two classes of games, the Time-Horizon Minority Game [M.L. Hart, P. Jefferies, N.F. Johnson, Phys. A 311, 275 (2002)] and the Parrondo Game [J.M.R. Parrondo, G.P. Harmer, D. Abbott, Phys. Rev. Lett. 85, 5226 (2000); J.M.R. Parrondo, How to cheat a bad mathematician (ISI, Italy, 1996)], that agents who optimize their strategy based on past information may actually perform worse than non-optimizing agents. In other words, low-entropy (more informative) strategies under-perform high-entropy (or random) strategies. This provides a precise definition of the “illusion of control” in certain set-ups a priori defined to emphasize the importance of optimization. An erratum to this article is available at .  相似文献   

3.
Molecular reaction dynamics of Cl + H2 (D2) has been studied on the latest analytical potential energy surface called BW3 using the Monte Carlo quasi-classical trajectory method. Excitation functions, differential cross sections and angular distributions of HCl and DCl products have been calculated. The excitation functions of the Cl (2P3/2) + n-H2 and Cl(2P3/2) + n-D2 reactions are also studied. The results are compared with those of quasi-classical trajectory [M. Alagia et al.: Phys. Chem. Chem. Phys. 2 (2000); F. J. Aoiz et al.: J. Phys. Chem. 100 (1996)], quantum mechanical (QM) calculations [F. J. Aoiz et al.:J. Chem. Phys. 115 (2001)] and experimental data [S. H. Lee et al.: J. Chem. Phys. 110 (1999); F. Dong et al.: J. Chem. Phys. 115 (2001)]. Discussions are given to some new results.  相似文献   

4.
Summary We present here the calculation of the expression for the surface tension depression by taking into consideration the finite size of the molecular superfluid helium. The agreement between the experimental results (J. R. Eckardt, D. O. Edwards, S. Y. Shen and F. M. Gasparini:Phys. Rev. B,16, 1944 (1977)) and the theoretical results is much better than previously published (K. R. Atkins:Can. J. Phys.,31, 1165 (1953)).  相似文献   

5.
We investigate both numerically and analytically the effect of strong disorder on the large-scale properties of the hyperbolic equations for stresses proposed in J.-P. Bouchaud, M.E. Cates, P. Claudin, J. Phys. I 5, 639 (1995), and J.P. Wittmer, P. Claudin, M.E. Cates, J.-P. Bouchaud, Nature 382, 336 (1996); J.P. Wittmer, P. Claudin, M.E. Cates, J. Phys. I 7, 39 (1997). The physical mechanism that we model is the local splitting of the force chains (the characteristics of the hyperbolic equation) by packing defects. In analogy with the theory of light diffusion in a turbid medium, we propose a Boltzmann-like equation to describe these processes. We show that, for isotropic packings, the resulting large-scale effective equations for the stresses have exactly the same structure as those of an elastic body, despite the fact that no displacement field needs to be introduced at all. Correspondingly, the response function evolves from a two-peak structure at short scales to a broad hump at large scales. We find, however, that the Poisson ratio is anomalously large and incompatible with classical elasticity theory that requires the reference state to be thermodynamically stable. Received 13 November 2000 and Received in final form 3 January 2001  相似文献   

6.
The telegraph equation is more suitable than ordinary diffusion equation in modeling reaction diffusion in several branches of sciences (E. Ahmed, H. A. Abdusalam, and E. S. Fahmy, 2001, Int. J. Mod. Phys. C 12(5), 717; E. Ahmed and H. A. Abdusalam, 2004, Chaos, Solitons and Fractals 22, 583; H. A. Abdusalam and E. S. Fahmy, 2003, Chaos, Solitons and Fractals 18, 259; Abdusalam, 2004 Appl. Math. Comp. 157, 515). An excitation wave in cardiac tissue fails to propagate if the transmembrane voltage at its front rises too slow and does not excite the tissue ahead of it. Then the sharp voltage profile of the front will dissipate, and subsequent spread of voltage will be purely diffusive. This mechanism is impossible in FitzHugh–Nagumo type system (V. N. Biktashev, 2003, Int. J. Bifarcation and Chaos 13(12), 3605). Biktashev suggested a simplified mathematical model for this mechanism and in the present work we generalize this model to telegraph system. Our generalized telegraph model has exact traveling front solutions and we show the effect of the time delay on the velocity and we show that, the post-front voltage depends on two parameters in which one of them is the time delay.  相似文献   

7.
This erratum corrects a mistake in reference [E. Scalas, U. Garibaldi, S. Donadio, Eur. Phys. J. B 53, 267 (2006)]. In that paper, we needed an aperiodic version of the BDY game, but, in formula (1), we incorrectly presented a periodic transition matrix of period 2 in the special case of g = 2 agents. Here, we present the right aperiodic version.  相似文献   

8.
Matter wave interference effects on the macro-scale predicted by the author in charged particle dynamics in a magnetic field [R.K. Varma, Phys. Rev. E 64, 036608 (2001)], and observed subsequently [R.K. Varma, A.M. Punithavelu, S.B. Banerjee, Phys. Rev. E 65, 026503 (2002); R.K. Varma, S.B. Banerjee, Phys. Scr. 75, 19 (2007)] have been shown here to be an interesting consequence of quantum entanglement between the parallel and perpendicular degrees of freedom of the particle. Treating the problem in the framework of the inelastic scattering theory, it is shown that these macro-scale matter waves are generated in the ‘parallel’ degree of freedom as a modulation of the plane wave state of the particle along the field concomitantly with the excitation of Landau levels in the perpendicular degree of freedom in an inelastic scattering episode. We highlight here the role of quantum entanglement leading to the generation of this macro-scale quantum entity which has been shown to exhibit observable consequences. This case also exemplifies a situation exhibiting quantum entanglement on the macro-scale.  相似文献   

9.
[1]R. Casalbuoani, A. Deandrea, and M. Oertel, JHEP 032(2004) 0402. [2]G. Hooft, In Search of the Ultimate Building Blocks, Cambridge University Press, Cambridge (1997). [3]J. Belazey, Searches for New Physics at Hadron Coliders,Northern Illinois University (2005). [4]N. Arkani-hamed, A.G. Cohen, and H. Georgi, Phys. Lett.B 513 (2001) 232 [hep-ph/0105239]. [5]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001 [hep-ph/0207243]. [6]N. Arkani-hamed, A.G. Cohen, E. Katz, and A.E. Nelson,JHEP 0207 (2002) 304 [hep-ph/0206021]. [7]N. Arkani-hamed, A.G. Cohen, E. Katz, A.E. Nelson, T.Gregoire, and J. G. Wacker, JHEP 0208 (2002) 021 [hepph/0206020]. [8]T. Gregoire and J.G. Wacker, JHEP 0208 (2002) 019[hep-ph/0206023]. [9]For a recent review, see e.g., M. Schmaltz, Nucl. Phys. B (Proc. Suppl.) 117 (2003) 40. [10]N. Arkani-hamed, A.G. Cohen, T. Gregoire, and J.G.Jacker, JHEP 0208 (2002) 020 [hep-ph/0202089]. [11]or a recent review, see e.g., M. Schmaltz, Nucl. Phys.Proc. Suppl. 117 (2003) 40 [hep-ph/0210415]. [12]E. Katz, J. Lee, A.E. Nelson, and D.G. Walker, hepph/0312287. [13]M. Beneke, I. Efthymiopoulos, M.L. Mangano, et al., hepph/0003033. [14]D.O. Carlson and C.-P. Yuan, hep-ph/9211289. [15]R. Frey, D. Gerdes, and J. Jaros, hep-ph/9704243. [16]G. Eilam, J.L. Hewett, and A. Soni, Phys. Rev. D 44(1991) 1473; W.S. Hou, Phys. Lett. B 296 (1992) 179; K.Agashe and M. Graesser, Phys. Rev. D 54 (1996) 4445;M. Hosch, K. Whisnant, and B.L. Young, Phys. Rev. D56 (1997) 5725. [17]C.S. Li, R.J. Oakes, and J.M. Yang, Phys. Rev. D 49(1994) 293, Erratum-ibid. D 56 (1997) 3156; G. Couture,C. Hamzaoui, and H. Koenig, Phys. Rev. D 52 (1995)1713; G. Couture, M. Frank, and H. Koenig, Phys. Rev.D 56 (1997) 4213; G.M. de Divitiis, et al., Nucl. Phys. B 504 (1997) 45. [18]B. Mele, S. Petrarca, and A. Soddu, Phys. Lett. B 435(1998) 401. [19]B. Mele, hep-ph/0003064. [20]J.M. Yang and C.S. Li, Phys. Rev. D 49 (1994) 3412,Erratum, ibid. D 51 (1995) 3974; J.G. Inglada, hepph/9906517. [21]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 41 (2004)241. [22]L.R. Xing, W.G. Ma, R.Y. Zhang, Y.B. Sun, and H.S.Hou, Commun. Theor. Phys. (Beijing, China) 40 (2003)171. [23]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, Phys.Rev. D 67 (2003) 095004. [24]I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66 (2002)072001. [25]T. Han, H.E. Logan, B. McElrath, and L.T. Wang, hepph/0302188. [26]A.J. Buras, A. Poschenrieder, and S. Uhlig, hepph/0410309. [27]S. Eidelman, et al., Phys. Lett. B 592 (2004) 1. [28]F. Legerlehner, DESY 01-029, hep-ph/0105283.  相似文献   

10.
We report elastic integral, momentum transfer and differential cross sections for electron scattering by N2O for energies up to 50 eV. These results were obtained at the static-exchange approximation with the Schwinger Multichannel Method with Pseudopotentials [M.H.F. Bettega, L.G. Ferreira and M.A.P. Lima, Phys. Rev. A 47, 1111 (1993)]. In general our results show good agreement with experimental data and with other theoretical results but some discrepancies are found. We have also found a shape resonance around 4 eV in agreement with previous calculations using the R-matrix Method of Sarpal et al. [J. Phys. B 29, 857 (1996)]. On the other hand, the existence of a resonance at about 13 eV, clearly seen by the Schwinger Variational Iterative Method [Michelin et al., J. Phys. B 29, 2115 (1996)], can not be confirmed by our calculations. At this energy, our cross sections show a broad bump with no clear resonant behavior given by the eigenphase sum. Received: 13 November 1997 / Revised: 13 March 1998 / Accepted: 9 April 1998  相似文献   

11.
[1]C.O.Weiss and R.Vilaseca,Dynamics of Lasers,VCH,Weinheim (1991); Instabilities and Chaos in Quantum Optics,eds.F.T.Arecchi and R.G.Harrison,Springer-Verlag,Berlin (1987). [2]H.Haken,Phys.Lett.A 53 (1975) 77. [3]Ju Rui,Huang Hong-Bin,Yang Peng,Xie Xia,and Zhao Huan,Commun.Theor.Phys.(Beijing,China) 44 (2005) 65; Ju Rui,Zhang Ya-Jun,Huang Hong-Bin,and Zhao Huan,Acta Phys.Sin.53 (2004) 2191 (in Chinese). [4]C.Z.Ning and H.Haken,Z.Phys.B 77 (1989) 247; B 77 (1989) 157; B 77 (1989) 163; J.Zakrenwski and M.Lewenstein,Phys.Rev.A 45 (1992) 2057. [5]G.J.deValearcel,E.Roldan,and R.Vilaseca,Phys.Rev.A 45 (1992) R2674; Phys.Rev.A 49 (1994) 1243. [6]X.Xie,H.B.Huang,F.Qian,Y.J.Zhang,P.Yang,and G.X.Qi,Commun.Theor.Phys.(Beijing,China) 46 (2006) 1042. [7]X.L.Deng,H.Q.Ma,B.D.Chen,and H.B.Huang,Phys.Lett.A 290 (2001) 77. [8]C.Benkert,and M.O.Scully,Phys.Rev.A 42 (1990) 2817. [9]M.O.Scully and M.S.Zubairy,Quantum Optics,Cambridge University Press,Cambridge (1997).  相似文献   

12.
We study self-diffusion within a simple hopping model for glassy materials. (The model is Bouchaud's model of glasses (J.-P. Bouchaud, J. Phys. I France 2, 1705 (1992)), as extended to describe rheological properties (P. Sollich, F. Lequeux, P. Hébraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)).) We investigate the breakdown, near the glass transition, of the (generalized) Stokes-Einstein relation between self-diffusion of a tracer particle and the (frequency-dependent) viscosity of the system as a whole. This stems from the presence of a broad distribution of relaxation times of which different moments control diffusion and rheology. We also investigate the effect of flow (oscillatory shear) on self-diffusion and show that this causes a finite diffusivity in the temperature regime below the glass transition (where this was previously zero). At higher temperatures the diffusivity is enhanced by a power law frequency dependence that also characterises the rheological response. The relevance of these findings to soft glassy materials (foams, emulsions etc.) as well as to conventional glass-forming liquids is discussed. Received 31 August 1998 and Received in final form 25 January 1999  相似文献   

13.
Subir Ghosh 《Physics letters. A》2009,373(14):1212-1217
We study complexified Harmonic Oscillator with a position-dependent mass, termed as Complex Exotic Oscillator (CEO). The complexification induces a gauge invariance [A.V. Smilga, J. Phys. A 41 (2008) 244026, arXiv:0706.4064; A. Mostafazadeh, J. Math. Phys. 43 (2002) 205; A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814; A. Mostafazadeh, J. Math. Phys. 43 (2002) 3944]. The role of PT-symmetry is discussed from the perspective of classical trajectories of CEO for real energy. Some trajectories of CEO are similar to those for the particle in a quartic potential in the complex domain [C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40 (1999) 2201; C.M. Bender, D.D. Holm, D. Hook, J. Phys. A 40 (2007) F793, arXiv:0705.3893].  相似文献   

14.
[1]G.T.Bodwin,E.Braaten,and G.P.Lepage,Phys.Rev.D 51 (1995) 1125;[Erratum-ibid.D 55 (1997) 5853][arXiv:hep-ph/9407339]; J.Boltz,P.Kroll,and G.A.Schulre,Phys.Lett.B 392 (1997) 198; J.Boltz,P.Kroll,and G.A.Schulre,Phys.J.C 2 (1998) 705. [2]S.M.Wong,Nucl.Phys.A 674 (2000) 185; S.M.Wong,Eur.Phys.J.C 14 (2000) 643. [3]J.Z.Bai,Y.Ban,J.G.Bian,et al.,Phys.Rev.D 67 (2003)112001. [4]M.Jacob and G.C.Wick,Ann.Phys.7 (1959) 404. [5]S.U.Chung,Phys.Rev.D 48 (1993) 1225; S.U.Chung,Phys.Rev.D 57 (1998) 431; B.S.Zou and D.V.Bugg,Eur.Phys.J.A 16 (2003) 537. [6]Particle Data Group,Phys.Lett.B 592 (2004) pp.924-966. [7]M.A.Doncheski,et al.,Phys.Rev.D 42 (1990) 2293; E.Eichten,et al.,Phys.Rev.D 21 (1980) 203; K.J.Sebastian,Phys.Rev.D 26 (1982) 2295; G.Hardekopf and J.Sucher,Phys.Rev.D 25 (1982) 2938; R.McClary and N.Byers,Phys.Rev.D 28 (1983) 1692; P.Moxhay and J.L.Rosner,Phys.Rev.D 28 (1983) 1132. [8]B.S.Zou and F.Hussain,Phys.Rev.C 67 (2003) 015204.  相似文献   

15.
This paper describes the effect of an electrical field on the bifurcation phenomenon that appears in a biaxially stretched slab of Mooney-Rivlin material (M. Mooney, J. Appl. Phys. 11, 582 (1940)) subjected to equal dead loads. The main conclusion of the analysis is that the stretch ratio at which the bifurcation phenomenon appears crucially depends on the configuration of the system rubber slab-electrodes. The theoretical foundations of the present study are based on a recent formulation on this subject carried out by Dorfmann and Ogden (A. Dorfmann, R.W. Ogden, Acta Mech. 174, 167 (2005); J. Elasticity 82, 99 (2006)).  相似文献   

16.
Following the theoretical suggestion of [E. Santos, Phys. Lett. A 327, 33 (2004); E. Santos, Eur. Phys. J. D 42, 501 (2007)], we present experimental results addressed to test restricted families of local realistic models, but without relying on the fair sampling assumption.  相似文献   

17.
In the vast application fields of lead zirconate titanate (PZT) thin films, of particular interest are the interaction effects occurring at the ferroelectric–substrate interface [E. Bruno, M.P. De Santo, M. Castriota, S. Marino, G. Strangi, E. Cazzanelli and N. Scaramuzza, J. Appl. Phys. 103 (2008) p.064103; S. Dunn and R.W. Whatmore, J. Eur. Ceram. Soc. 22 (2002) p.825]. Relevant for this purpose are polarity-sensitive liquid crystals (LC) cells and micro- and nanoelectronic applications [S. Marino, M. Castriota, G. Strangi, E. Cazzanelli and N. Scaramuzza, J. Appl. Phys. 102, selected for Virtual Journal of Nanoscale Science & Technology, 30 July 2007 (2007) p.013002]. The polarisation current was investigated of a PZT film (PbZr0.47Ti0.53O3) obtained by sol–gel synthesis and deposited by spin coating on an indium tin oxide (ITO) electrode. The different behaviour exhibited by such a system when the support electrode was previously submitted to a thermal treatment was attributed to the change of the electrical properties of the ITO layer. In particular, a higher negative charge in the conductive band of the ITO electrode seems to be responsible for a higher order in the ferroelectric film.  相似文献   

18.
Quantum characteristics of the Topological Non-connectivity Threshold (TNT), introduced in [F. Borgonovi, G.L. Celardo, M. Maianti, E. Pedersoli, J. Stat. Phys. 116, 516 (2004)], have been analyzed in the hard quantum regime. New interesting perspectives in term of the possibility to study the intriguing quantum-classical transition through Macroscopic Quantum Tunneling have been addressed.  相似文献   

19.
[1]J.H. Hamilton,A. VRamayya, W.T. Pinkston, et al.,Phys. Rev. Lett. 32 (1974) 239. [2]R. Julin, K. Helariutta, and M. Muikku, J. Phys. G 27(2001) R109. [3]J.H. Hamilton, Nukleonika 24 (1979) 561. [4]W.C. Ma, et al., Phys. Lett. B 139 (1984) 276. [5]R. Bengtsson, et al., Phys. Lett. B 183 (1987) 1. [6]S. Yoshida and N. Takigawa, Phys. Rev. C 55 (1996)1255. [7]T. Niksic, D. Vretenar, P. Ring, et al., Phys. Rev. C 65(2002) 054320. [8]F.G. Condev, M.P. Carpenter, R.V.F. Janssens, et al.,Phys. Lett. B 528 (2002) 221. [9]D.G. Jenkins, A.N. Andreyev, R.D. Page, et al., Phys.Rev. C 66 (2002) 011301(R). [10]B.D. Serot and J.D. Walecka, Adv. Nuc]. Phys. 16 (1986)1. [11]P. Ring, Prog. Part. Nucl. Phys. 37 (1996) 193. [12]J. Meng and P. Ring, Phys. Rev. Lett. 77 (1996) 3963. [13]J. Meng and P. Ring, Phys. Rev. Lett. 80 (1998) 460. [14]S.K. Patra, S. Yoshida, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1924. [15]S. Yoshida, S.K. Patra, N. Takigawa, and C.R. Praharaj,Phys. Rev. C 50 (1994) 1938. [16]G.A. Lalazissis and P. Ring, Phys. Lett. B 427 (1998)225. [17]Jun-Qing Li, Zhong-Yu Ma, Bao-Qiu Chen, and Yong Zhou, Phys. Rev. C 65 (2002) 064305. [18]G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 1. [19]G. Audi and A.H. Wapstra, Nucl. Phys. A 595 (1995)409. [20]G. Audi and A.H. Wapstra, Nucl. Phys. A 624 (1997) 1. [21]P. MOller and J.R. Nix, Atom. Data and Nucl. Data Table 59 (1995) 307.  相似文献   

20.
[1]J. Nagamatsu, N. Nakagava, T. Muranaka, Y. Zenitani,and J. Akimitsu, Nature 410 (2001) 63. [2]C. Buzea and T. Yamashita, Supercond. Sci. Techn. 14(2001) R115. [3]S. Budko, G. Lapertot, C. Petrovic, C.E. Gunningham, N.Anderson, and P.C. Canfield, Phys. Rev. Lett. 86 (2001)1877. [4]H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, and J. Akimitsu, Phys. Rev. Lett. 87 (2001) 127001. [5]J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov,and L.L. Boyer, Phys. Rev. Lett. 87 (2001) 4656. [6]A. Liu, I.I. Mazin, and J. Kortus, Phys. Rev. Lett. 87(2001) 087005. [7]X.K. Chen, M.J. Konstantinovich, J.C. Irwin, D.D.Lawrie, and J.P. Frank, Phys. Rev. Lett. 87 (2001)157002. [8]H. Giublio, D. Roditchev, W. Sacks, R. Lamy, D.X.Thanh, J. Kleins, S. Miraglia, D. Fruchart, J. Markus,and P. Monod, Phys. Rev. Lett. 87 (2001) 177008. [9]F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, and J.D. Jorgensen, Phys. Rev. Lett. 87 (2001) 04700. [10]S.V. Shulga, S.-L. Drechsler, H. Echrig, H. Rosner, and W. Pickett, Cond-mat/0103154 (2001). [11]A.A. Golubov, J. Kortus, O.V. Dolgov, O. Jepsen, Y.Kong, O.K. Andersen, B.J. Gibson, K. Ahn, and R.K.Kremer, J. Phys. Condens. Matter 14 (2002) 1353. [12]H. Doh, M. Sigrist, B.K. Chao, and Sung-Ik Lee, Phys.Rev. Lett. 85 (1999) 5350. [13]I.N. Askerzade, N. Guclu, and A. Gencer, Supercond. Sci.Techn. 15 (2002) L13. [14]I.N. Askerzade, N. Guclu, A. Gencer, and A. Kiliq, Supercond. Sci. Techn. 15 (2002) L17. [15]I.N. Askerzade and A. Gencer, J. Phys. Soc. Jpn. 71(2002) 1637. [16]I.N. Askerzade, Physica C 397 (2003) 99. [17]V.V. Anshukova, B.M. Bulychev, A.I. Golovashkin, L.I.Ivanova, A.A. Minakov, and A.P. Rusakov, Phys. Solid State 45 (2003) 1207. [18]A.A. Abrikosov, Fundamentals of the Theory of Metals,North-Holland, Amsterdam (1988). [19]M.N. Kunchur, S.I. Lee, and W.N. Kang, Phys. Rev. B 68 (2003) 064516.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号