首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 507 毫秒
1.
矩阵奇异值分解的摄动重分析技术具有广泛的应用前景,作者继在文[2]中提出了一种间接摄动分析方法之后,在本文中又进一步提出了直接摄动法,建立了一般实矩阵的非重奇异值及其左、古奇异向量的二阶摄动计算公式.这可满足大多数实际应用问题的一般需要.文中以算例说明了直接摄动法的有效性.  相似文献   

2.
O-对称矩阵的奇异值分解及其算法   总被引:3,自引:0,他引:3  
本文研究了具有轴对称结构矩阵的奇异值分解,找出了这类矩阵奇异值分解与其子阵奇异值分解之间的定量关系.利用这些定量关系给出这类矩阵奇异值分解和Moore-Penrose逆的算法,据此可极大地节省求该类矩阵奇异值分解和Moore-Penrose逆时的计算量和存储量.  相似文献   

3.
讨论了矩阵奇异值的问题,利用奇异值分解定理给出了奇异值的极值性质,并用其证明了矩阵论中关于奇异值的一些经典结论.  相似文献   

4.
酉延拓矩阵的奇异值分解及其广义逆   总被引:1,自引:0,他引:1  
从普通奇异值分解出发,导出了酉延拓矩阵的奇异值和奇异向量与母矩阵的奇异值和奇异向量间的定量关系,同时对酉延拓矩阵的满秩分解及g逆,反射g逆,最小二乘g逆,最小范数g逆作了定量分析,得到了酉延拓矩阵的满秩分解矩阵F*和G*与母矩阵A的分解矩阵F和G之间的关系.最后给出了相应的快速求解算法,并举例说明该算法大大降低了分解的计算量和存储量,提高了计算效率.  相似文献   

5.
关于四元数矩阵的最佳逼近问题   总被引:1,自引:0,他引:1  
刘永辉 《数学研究》2004,37(2):129-134
通过使用四元数矩阵的广义奇异值分解,给出了四元数矩阵最佳逼近问题‖AHXA-C‖2F+‖BHXB-D‖2F=min, s.t. XH=X的一般表达式.  相似文献   

6.
用随机奇异值分解算法求解矩阵恢复问题   总被引:1,自引:0,他引:1       下载免费PDF全文
许雪敏  向华 《数学杂志》2017,37(5):969-976
本文研究了大型低秩矩阵恢复问题.利用随机奇异值分解(RSVD)算法,对稀疏矩阵做奇异值分解.该算法与Lanczos方法相比,在误差精度一致的同时运算时间大大降低,且该算法对相对低秩矩阵也有效.  相似文献   

7.
本文研究了大型低秩矩阵恢复问题.利用随机奇异值分解(RSVD)算法,对稀疏矩阵做奇异值分解.该算法与Lanczos方法相比,在误差精度一致的同时运算时间大大降低,且该算法对相对低秩矩阵也有效.  相似文献   

8.
1引言近年来,关于矩阵的反问题国内外有诸多学者都做了研究工作.如,双对称(反对称)矩阵反问题、中心对称(反中心对称)矩阵反问题、对称次反对称(反对称次对称)矩阵反问题.这些矩阵在信息论、线性系统理论及数值分析等领域中有其广泛应用.研究反问题的工具大多是奇异值分解(SVD)[6,8,9,5]、广义奇异值分解(GSVD)[4],且部分学者利用广义逆的方法[7]讨论上述的问题.本文的主要思想是找出这些矩阵的共同特点,利用矩  相似文献   

9.
研究矩阵的奇异值偏序,给出了矩阵的奇异值偏序的等价刻画和性质,指出了相关文献关于矩阵*序刻画不真,利用强同时奇异值分解给出了矩阵*-序的刻画.  相似文献   

10.
矩阵奇异值分解及其在高维数据处理中的应用   总被引:2,自引:0,他引:2  
矩阵奇异值分解能够实现对高维数据的局部特征提取及维数约减,在智能信息处理和模式识别研究领域具有十分重要的应用价值.首先分析了高维数据处理所面临的困境,并对常用的降维算法进行简单的归纳总结;然后阐述了矩阵奇异值分解的基本原理及其在维数约减和数据压缩中的物理意义;接着通过分析两种建立在奇异值分解基础上的PCA与LSA降维算法的数学导出过程,进一步给出了两者的等价性证明;最后总结了矩阵奇异值分解的优缺点,并且预测了高维数据处理技术未来的发展趋势.  相似文献   

11.

In many color image processing and recognition applications, one of the most important targets is to compute the optimal low-rank approximations to color images, which can be reconstructed with a small number of dominant singular value decomposition (SVD) triplets of quaternion matrices. All existing methods are designed to compute all SVD triplets of quaternion matrices at first and then to select the necessary dominant ones for reconstruction. This way costs quite a lot of operational flops and CPU times to compute many superfluous SVD triplets. In this paper, we propose a Lanczos-based method of computing partial (several dominant) SVD triplets of the large-scale quaternion matrices. The partial bidiagonalization of large-scale quaternion matrices is derived by using the Lanczos iteration, and the reorthogonalization and thick-restart techniques are also utilized in the implementation. An algorithm is presented to compute the partial quaternion singular value decomposition. Numerical examples, including principal component analysis, color face recognition, video compression and color image completion, illustrate that the performance of the developed Lanczos-based method for low-rank quaternion approximation is better than that of the state-of-the-art methods.

  相似文献   

12.
In this paper, an extension of the structured total least‐squares (STLS) approach for non‐linearly structured matrices is presented in the so‐called ‘Riemannian singular value decomposition’ (RiSVD) framework. It is shown that this type of STLS problem can be solved by solving a set of Riemannian SVD equations. For small perturbations the problem can be reformulated into finding the smallest singular value and the corresponding right singular vector of this Riemannian SVD. A heuristic algorithm is proposed. Some examples of Vandermonde‐type matrices are used to demonstrate the improved accuracy of the obtained parameter estimator when compared to other methods such as least squares (LS) or total least squares (TLS). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a new method for the computation of truncated singular value decomposition (SVD) of an arbitrary matrix. The method can be qualified as deterministic because it does not use randomized schemes. The number of operations required is asymptotically lower than that using conventional methods for nonsymmetric matrices and is at a par with the best existing deterministic methods for unstructured symmetric ones. It slightly exceeds the asymptotical computational cost of SVD methods based on randomization; however, the error estimate for such methods is significantly higher than for the presented one. The method is one‐pass, that is, each value of the matrix is used just once. It is also readily parallelizable. In the case of full SVD decomposition, it is exact. In addition, it can be modified for a case when data are obtained sequentially rather than being available all at once. Numerical simulations confirm accuracy of the method.  相似文献   

14.
In this paper, a modified scheme is proposed for iterative completion matrices generated by the augmented Lagrange multiplier (ALM) method based on the mean value. So that the iterative completion matrices generated by the new algorithm are of the Toeplitz structure, which decrease the computation of SVD and have better approximation to solution. Convergence is discussed. Finally, the numerical experiments and inpainted images show that the new algorithm is more effective than the accelerated proximal gradient (APG) algorithm, the singular value thresholding (SVT) algorithm and the ALM algorithm, in CPU time and accuracy.  相似文献   

15.
16.
The paper derives improved relative perturbation bounds for the eigenvalues of scaled diagonally dominant Hermitian matrices and new relative perturbation bounds for the singular values of symmetrically scaled diagonally dominant square matrices. The perturbation result for the singular values enlarges the class of well-behaved matrices for accurate computation of the singular values. AMS subject classification (2000)  65F15  相似文献   

17.
In this article, we study robust tensor completion by using transformed tensor singular value decomposition (SVD), which employs unitary transform matrices instead of discrete Fourier transform matrix that is used in the traditional tensor SVD. The main motivation is that a lower tubal rank tensor can be obtained by using other unitary transform matrices than that by using discrete Fourier transform matrix. This would be more effective for robust tensor completion. Experimental results for hyperspectral, video and face datasets have shown that the recovery performance for the robust tensor completion problem by using transformed tensor SVD is better in peak signal‐to‐noise ratio than that by using Fourier transform and other robust tensor completion methods.  相似文献   

18.
This paper gives SVD perturbation bounds and expansions that are of use when an m × n, m ? n matrix A has small singular values. The first part of the paper gives subspace bounds that are closely related to those of Wedin but are stated so as to isolate the effect of any small singular values to the left singular subspace. In the second part first and second order approximations are given for perturbed singular values. The subspace bounds are used to show that all approximations retain accuracy when applied to small singular values. The paper concludes by deriving a subspace bound for multiplicative perturbations and using that bound to give a simple approximation to a singular value perturbed by a multiplicative perturbation.  相似文献   

19.
The truncated singular value decomposition (SVD) is considered as a method for regularization of ill-posed linear least squares problems. In particular, the truncated SVD solution is compared with the usual regularized solution. Necessary conditions are defined in which the two methods will yield similar results. This investigation suggests the truncated SVD as a favorable alternative to standard-form regularization in cases of ill-conditioned matrices with well-determined numerical rank.This work was carried out while the author visited the Dept. of Computer Science, Stanford University, California, U.S.A., and was supported in part by National Science Foundation Grant Number DCR 8412314, by a Fulbright Supplementary Grant, and by the Danish Space Board.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号