首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 887 毫秒
1.
We have developed a miniature electron ion coincidence (EICO) analyzer mounted on a conflat flange with an outer diameter of 114 mm. It consists of a cylindrical mirror analyzer (CMA), a time-of-flight ion mass spectrometer (TOF-MS), a commercially available linear motion feed through, and a tilt adjustment mechanism. Each sample surface was irradiated by synchrotron radiation, and the energies of emitted electrons were analyzed and detected by the CMA, while desorbed ions were collected by the TOF-MS in coincidence with the electrons. The performance of the EICO analyzer was tested by measuring the Auger-electron H+ photoion coincidence spectrum of condensed water at 4a1 <-- O 1s resonance.  相似文献   

2.
A Monte Carlo simulation including surface excitation, Auger electron‐ and secondary electron production has been performed to calculate the energy spectrum of electrons emitted from silicon in Auger electron spectroscopy (AES), covering the full energy range from the elastic peak down to the true‐secondary‐electron peak. The work aims to provide a more comprehensive understanding of the experimental AES spectrum by integrating the up‐to‐date knowledge of electron scattering and electronic excitation near the solid surface region. The Monte Carlo simulation model of beam–sample interaction includes the atomic ionization and relaxation for Auger electron production with Casnati's ionization cross section, surface plasmon excitation and bulk plasmon excitation as well as other bulk electronic excitation for inelastic scattering of electrons (including primary electrons, Auger electrons and secondary electrons) through a dielectric functional approach, cascade secondary electron production in electron inelastic scattering events, and electron elastic scattering with use of Mott's cross section. The simulated energy spectrum for Si sample describes very well the experimental AES EN(E) spectrum measured with a cylindrical mirror analyzer for primary energies ranging from 500 eV to 3000 eV. Surface excitation is found to affect strongly the loss peak shape and the intensities of the elastic peak and Auger peak, and weakly the low energy backscattering background, but it has less effect to high energy backscattering background and the Auger electron peak shape. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
We performed Li analysis by reflection electron energy loss spectroscopy (REELS) with a scanning electron microscopy-based apparatus. It was possible to distinguish between Li compounds containing different transition metal elements spatially, via the spectrum imaging scheme of REELS spectra. We also acquired the Li spectrum for an Li-inserted graphite negative electrode. REELS measurements with hemispherical analyzer were performed to obtain high-quality spectra with sufficient energy resolution and compared with those from cylindrical mirror analyzer measurements; the former provided a more detailed chemical state evaluation of Li.  相似文献   

4.
The new design incorporates the negative ion source and the mass analyzer, both constructed from cylindrical electrodes. The ion source is formed by three gridded cylindrical electrodes: a pulsed grid, the intermediate grid and the final accelerating grid. During a first time lapse, the electrons penetrate through the pulsed grid into the retarding field between this grid and the intermediate grid. The electrons are turning at some depth inside this intergrid space, where the attachment to neutral molecules most probably occurs. Next, the pulsed grid becoming strongly negative and ions are extracted towards the final acceleration grid. The ions from the cylindrical surface where they were created concentrate on the common axis of the electrodes (lateral focusing). The source lateral and time focus are coincident. A cylindrical electrostatic mirror is fitted to the source. The design, with a single stage, ensures also lateral focusing of the ions diverging from the common axis of the electrodes. The mirror electric and geometric parameters were selected to ensure both lateral and time focusing on the final detector with subsequent high luminosity. The basic parameters of the specific negative ion source time-of-flight mass analyzer design proposed here, are ion source final acceleration, intermediate, pulsed cylindrical grid radii 10, 20 and 30 mm, respectively, electrostatic mirror earthed grid and ion turning points surface radii 0.6 and 0.8 m, respectively. Ion packet smearing by the ion energy spread (resulting from the initial electron energy spread as electrons are turning at different depths inside the ionization region, from the moment when ions were created, being accelerated towards the pulsed grid during ionization) and by the turnaround time inside the cylindrical field was accounted for. Maintaining very high sensitivity, a resolution of the order of 100 is expected.  相似文献   

5.
The design and construction of an electron energy analyzer for the study of electron impact processes in atoms, molecules and solids is described. The analyzer incorporates a 180° hemispherical deflector and five-element entrance optics. Focusing characteristics and angular behavior of the analyzer have been investigated by using the electron-ray tracing simulation program, SIMION. The entrance lens system to the hemispherical deflector has been designed to have high collection efficiency for low-energy electrons. The fringing field correction has been done by tilting the input beam angle outward for real aperture configuration.  相似文献   

6.
An experimental method that increases the analyzer resolution of cylindrical mirror analyzer CMA‐based Auger spectrometers is described. By means of electrically biasing the sample, the effective energy resolution obtainable from the CMA instrument is improved from the native 0.5 to 0.1% or even better for higher kinetic energy Auger transitions. In addition, the maximum kinetic energy Auger transition observable by the CMA Auger instrument is increased from 3200 to 5700 eV, in the current realization. It is also shown that the sensitivity of the energy scale calibration to sample working distance with respect to the analyzer is simultaneously reduced, making the method suitable for chemical surface analysis. The biasing is accomplished using a special sample holder with electronics and software that can be added to an existing instrument. The overall capability of the Auger instrument for chemical analysis is, therefore, increased, while preserving all the analytical functionality and features of the CMA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
谭国斌  黄正旭  高伟  周振 《分析化学》2013,41(10):1614-1619
本实验室研制了国内首台宽离子能量检测范围飞行时间质谱仪。仪器采用紧凑式电子轰击源设计,配合离子透镜系统有效的调制离子流,飞行时间质量分析器采用了离子垂直引入式,双场加速和双场反射以及大尺寸MCP检测装置设计。仪器单离子信号半峰宽约2 ns,仪器分辨率优于1600FWHM,检测实际样品质量范围为1~127 amu(仪器理论质量检测上限优于800 amu),可检测离子能量范围优于2个数量级(3~140 eV)。若该TOF质量分析器与短瞬高压脉冲放电离子源耦合联用,可广泛应用于高能离子束的快速检测,如真空阴极放电对制备薄膜、离子注入材料的表征,导电材料的离子电荷态分布以及离子扩散速度的测定等。  相似文献   

8.
Dissociative electron attachment to dialanine and alanine anhydride has been studied in the gas phase utilizing a double focusing two sector field mass spectrometer. We show that low-energy electrons (i.e., electrons with kinetic energies from near zero up to 13 eV) attach to these molecules and subsequently dissociate to form a number of anionic fragments. Anion efficiency curves are recorded for the most abundant anions by measuring the ion yield as a function of the incident electron energy. The present experiments show that as for single amino acids (M), e.g., glycine, alanine, valine, and proline, the dehydrogenated closed shell anion (M-H)(-) is the most dominant reaction product. The interpretation of the experiments is aided by quantum chemical calculations based on density functional theory, by which the electrostatic potential and molecular orbitals are calculated and the initial electron attachment process prior to dissociation is investigated.  相似文献   

9.
Tilinin  I. S.  Werner  W. S. M. 《Mikrochimica acta》1994,114(1):485-503
The study of fast electron interaction with solids in the energy range from 100 eV to several tens of keV is prompted by quickly developing microbeam analysis techniques such as electron probe microanalysis, scanning electron microscopy, electron energy loss spectroscopy and so on. It turned out that for random solids the electron transport problem might be solved on the basis of the generalized radiative field similarity principle. The latter states that the exact differential elastic cross section in the kinetic equation may be replaced by an approximate one provided the conditions of radiative field similarity are fulfilled. Application of the generalized similarity principle to electron scattering in solids has revealed many interesting features of electron transport. Easy to use and effective formulae have been obtained for the angular and energy distribution of electrons leaving a target, total yields of characteristic photons and slow electrons escaping from a sample bombarded by fast primaries, escape probability of Auger electrons as a function of depth etc. The analytical results have been compared with Monte Carlo calculations and experiments in a broad range of electron energies and scattering properties of solids and good agreement has been observed.  相似文献   

10.
Using a coaxial cylindric electron spectrometer and an electrostatic ion energy analyzer in tandem, a direct measurement of the difference of the energy of convoy peak electron and the electron equivalent ion energy of protons emerging from the downstream surface of C, Au and Al foils is performed in the proton energy range from 60 to 250 keV. This measurement is made possible using the accepted evidence that for a gas target these energies are equal. It is found that also for the beam foil convoy peak electrons, within an experimental average uncertainty of about ±0.1 eV, there is no difference between these energies. If one accepts that the origin of convoy electrons is from inside the solid, the conclusion is that no retardation by the solid surface potential barrier, which is of the order of a few eV, is observed. This is attributed to the strong electron-ion Coulomb interaction which almost completely overshadows the force exerted on the electron by the field of the surface barrier.  相似文献   

11.
The imaging performance of an XPS instrument employing a spherical mirror electron energy analyser has been characterised by measuring the peak position, full width at half maximum (FWHM), and lineshape, at every pixel in the image, for different modes of operation. Changes in these parameters have been identified and recommendations made for quantification of, and chemical state determination from, spectrum image data sets. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Single photon double ionization of CF4 has been studied by means of a time-of-flight photoelectron-photoelectron coincidence technique, which has very recently been extended towards ion detection, with energy analysis for the electrons and mass analysis for the ions. The complete single photon double ionization electron spectrum of CF4 up to a binding energy of approximately 51 eV is presented and discussed, also with the aid of accurate ab initio Green's function calculations. From ion detection in coincidence with the ejected electrons, we derive fragmentation pathway-selected double ionization electron spectra of CF4. From the same data we extract the yield of each doubly charged ion or ion pair as a function of the double ionization energy.  相似文献   

13.
We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a crystal temperature range of 89 to 1100 K. A microchannel plate-based low energy electron diffraction/retarding field Auger electron spectrometer (AES) apparatus identifies surface structures present on the outer surface of the cylinder, while a separate double pass cylindrical mirror analyzer AES verifies surface cleanliness. A supersonic molecular beam, skimmed by a rectangular slot, impinges molecules on a narrow longitudinal strip of the surface. Here, we use the King and Wells technique to demonstrate how surface structure influences the dissociation probability of deuterium at various kinetic energies. Finally, we introduce spatially-resolved temperature programmed desorption from areas exposed to the supersonic molecular beam to show how surface structures influence desorption features.  相似文献   

14.
In the course of experiments that included Auger electron spectroscopy (AES) and high-resolution electron energy loss spectroscopy (HREELS) on cation exchange at benzoquinone sulfonate chemisorbed on a Pd(111) electrode, it was found that, whereas the AES spectra remained invariant as the counter cation was varied from H+ to K+ to Cs+, profound changes occurred in the HREELS spectra. Specifically, the intensity of the spectral features decreased noticeably when H+ was replaced with K+. And, when the K+ ions were exchanged with Cs+, nothing but a flat-line (dead) spectrum was observed; even the elastic peak was completely attenuated. When the Cs+ ions were displaced by protons, the initial undiminished spectrum was fully restored. This outcome, while unrelated to cation-exchange selectivity, is of exceptional significance in surface electron spectroscopy. It appears that the positive ions on the surface attracted the low-energy incident electrons such that backscattering towards the energy analyzer was hindered; partially by K+ but totally by the larger Cs+ ion. The use of HREELS to examine the molecular integrity of chemisorbed anionic species must thus take cognizance of the possibility that the counter cation chosen to preserve interfacial-layer electroneutrality can have a profound effect. To circumvent such complication, low-valent and small-radii cations will have to be employed. In addition, although subject to instrument limitations, higher incident-electron energies could be adopted. AES, with incident-electron energies in the kV range, is impervious to the presence of counter cations.  相似文献   

15.
A scanning micro-imaging instrument using an energy dispersive transmission X-ray spectrometry is developed. This instrument consists of micro X-ray source, X-ray guide tube, x–y scanning stage, and an SDD (Silicon Drift Detector), which is an energy dispersive X-ray spectrometer with a high throughput signal processor for measuring transmission X-ray spectrum. Using this instrument, (1) two-dimensional imaging of an intermediate product of multi-layer ceramic capacitor, and (2) thickness distribution imaging of an aluminum can-tab top, are performed nondestructively.  相似文献   

16.
The interaction between electrons and organized organic thin films was investigated by measuring the energy distribution of photoelectrons injected from a thin silver film coated with thin organic layers. Electrons with energy above ∽0.8 eV were transmitted ballistically through an organic layer that contains up to five monolayers, each ∽2 nm thick. Elastic scattering processes contribute significantly to the electron energy distribution only for thicker layers. The transmission of low-energy electrons is controlled mainly by an electrostatic barrier perpendicular to the surface. A signature of a band structure in the organic layer was observed when the electrons were transmitted through 13 layers. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
GEMS is a new type of time-of-flight mass spectrometer based on an electrostatic energy analyzer. Mass resolution equals the energy analyzer kinetic energy resolution, which is set by its slit size. In GEMS, monochromatic ions enter the entrance slit at random times, and the gated ion deflection produced by the electrostatic field in the analyzer rejects ions that are inside the analyzer at gate onset, detecting those entering the analyzer after gate onset. This provides mass separation while overcoming the temporal and spatial spread problems typical of TOF applications. Paradoxically, GEMS works because all ion masses follow identical trajectories. GEMS is easily multiplied into two-dimensional arrays to increase sensitivity in space applications, requires relatively low voltages, and uses only a few electrical connections. Thus, it is easy to package GEMS as a small, low-power instrument for applications in harsh environments. A disadvantage of GEMS is that its output is the integral of the TOF spectrum and the derivative of the raw data must be taken, a procedure that is likely to add noise. A version of GEMS detecting un-deflected ions (u-GEMS) has been tested to demonstrate the time-integrated feature of the raw data but without the benefit of energy analysis. This paper describes GEMS implemented with the small deflection energy analyzer (SDEA), a compact version of the parallel plate energy analyzer. SDEA is described both analytically and with ion trajectory simulations using the ion trajectory simulation software SIMION; the results are then used to describe GEMS and compute its performance.  相似文献   

18.
采用离子交换法制备了具有核-壳结构的磁性十二烷基硫酸钠改性类水滑石Fe_3O_4@(SDSHTlc)纳米复合物,并利用透射电镜、粉末X-射线衍射、红外光谱、电感耦合等离子体发射光谱、元素分析等对其进行了表征。研究了Fe_3O_4@(SDS-HTlc)对甲基橙的吸附动力学和热力学。结果表明,Fe_3O_4@(SDSHTlc)对甲基橙有较好吸附效果,吸附动力学曲线符合准二级动力学方程;吸附等温线符合线性方程,吸附量随体系p H的增大和温度的升高均降低。在外部磁场下,30s内可从水溶液中分离出Fe_3O_4@(SDS-HTlc),这为去除水中疏水染料提供了简单的一步吸附处理方法。  相似文献   

19.
Electron capture dissociation (ECD) of polypeptides has been demonstrated using a commercially available 3 Tesla Fourier transform ion cyclotron resonance (FTICR) instrument. A conventional rhenium filament, designed for high-energy electron impact ionisation, was used to effect ECD of substance P, bee venom melittin and bovine insulin, oxidised B chain. A retarding field analysis of the effective electron kinetic energy distribution entering the ICR cell suggests that one of the most important parameters governing ECD for this particular instrument is the need to employ low trapping plate voltages. This is shown to maximise the abundance of low-energy electrons. The demonstration of ECD at this relatively low magnetic field strength could offer the prospect of more routine ECD analysis for the wider research community, given the reduced cost of such magnets and (at least theoretically) the greater ease of electron/ion cloud overlap at lower field.  相似文献   

20.
The main concepts of the new theory of processes with the participation of excess electrons in polar liquids are considered. The theory takes into account that (1) polar liquids are electrostatically inhomogeneous (local potentials on molecules are different) and (2) a molecule can accept an electron for a short time to produce an anion in an unstable state with a certain energy and lifetime. A discrete model of a substance consisting of molecules with constant dipole moments is used. Excess electrons in a liquid are described by energy distribution density, and the behavior of electrons, by quantum mechanics equations. The experimental data on the photoionization of water and aqueous solutions of salts and the low threshold energy of photons (~6.5 eV) at which solvated electrons appear in water are explained. The absorption spectra of water with excess electrons at the first and subsequent time moments after their photogeneration are reproduced theoretically. The dependence of the photoemission of solvated electrons from potassium-ammonia solutions on the energy of photons is interpreted. The continuous spectrum of spontaneous radiation of solvated electrons in liquid ammonia and water is calculated. The optical absorption spectra of solvated electrons in such polar liquids as water and ammonia are reproduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号