首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The shape of lines in the radiospectroscopic (NMR and EPR) and dielectric spectra of materials formed by nanoparticles (hereafter, nanomaterials) is analyzed theoretically. The theory is developed in the framework of the core and shell model according to which a nanoparticle consists of two regions whose properties are affected and unaffected by the surface, respectively. The changes in the resonance frequency, the relaxation time, and the static permittivity due to the surface tension are taken into account, and the Gaussian and Lorentzian shapes of homogeneously broadened lines are considered. The inhomogeneous broadening of the spectral lines is examined for several types of nanoparticle size distributions. It is demonstrated that the splitting of the initial lines in the spectra of bulk systems into pairs of lines with a decrease in the particle size is a specific feature of the spectra of nanoparticles. The intensities and half-widths of the lines are investigated as functions of the parameters of the size distribution of nanoparticles. The results of theoretical calculations are compared with recent experimental data on the 17O and 25Mg NMR spectra of nanocrystalline MgO. The theoretical dependences of the intensity, the resonance frequency, and the half-width of the spectral lines are in good agreement with the experimental data. The proposed theory offers a satisfactory explanation of the behavior of the static permittivity in BaTiO3 ceramic materials with nanometer-sized grains.  相似文献   

2.
本文利用离散点偶极子近似方法(DDA)研究了金和银纳米粒子二维周期阵列的光学性质。研究结果表明二维周期阵列的消光性质及其表面等离子共振(SPR)波长受到阵列内粒子组成材料、粒子形状尺寸、阵列周期和阵列排布方式等因素的影响。对于二维正方阵列,当周期较小时(一般小于300 nm),阵列的共振波长主要取决于粒子组成材料和形状尺寸;当周期与阵列单体的共振波长附近时,阵列的消光谱中会出现极窄且锐的SPR共振峰,峰位只与阵列的周期值相关。改变阵列在平行和垂直于入射光偏振方向的周期,可以方便地调节二维长方阵列的共振峰的峰位和峰宽。  相似文献   

3.
4.
The particle size distribution, morphology and optical properties of the Au nanoparticle (NP) structures for surface enhanced Raman signal (SERS) application are investigated in dependence on their preparation conditions. The structures are produced from relatively thin Au films (10–20 nm) sputtered on fused silica glass substrate and irradiated with several pulses (6 ns) of laser radiation at 266 nm and at fluencies in the range of 160–412 mJ/cm2. The SEM inspection reveals nearly homogeneously distributed, spherical gold particles. Their initial size distribution of the range of 20–60 nm broadens towards larger particle diameters with prolonged irradiation. This is accompanied by an increase in the uncovered surface of the glass substrate and no particle removal is observed. In the absorption profiles of the nanostructures, the broad peak centred at 546 nm is ascribed to resonant absorption of surface plasmons (SPR). The peak position, halfwidth and intensity depend on the shape, size and size distribution of the nanostructured particles in agreement with literature. From peak intensities of the Raman spectra recorded for Rhodamine 6G in the range of 300–1800 cm−1, the relative signal enhancement by factor between 20 and 603 for individual peaks is estimated. The results confirm that the obtained structures can be applied for SERS measurements and sensing.  相似文献   

5.
High-resolution soft X-ray spectra of H-like and He-like ions were produced from laser irradiated silicon and aluminum targets. Plasma size was about 100 μm. X-ray spectra were analyzed to determine plasma parameters. We compared the line shape of resonance transitions and their intensity ratios to corresponding dielectronic satellites and the intensities of the inter combination lines of He-like ions, with the results of model calculations. Such comparison gave average values of the electron density N e=(1?1.9)×1021 cm?3 and the electron temperature T e=460–560 eV for Si plasmas and about 560 eV for Al plasmas produced by the first and the second laser harmonics. According to our estimations, more than 1012 photons were produced within the resonance line spectral width and in the solid angle 2π steredian during the total decay period.  相似文献   

6.
Nickel nanoparticles were grown in silica glass by annealing of the sol-gel prepared silicate matrices doped with nickel nitrate. TEM characterization of Ni/SiO2 glass proves the formation of isolated spherical nickel nanoparticles with mean sizes 6.7 and 20 nm depending on annealing conditions. The absorption and photoluminescence spectra of Ni/SiO2 glasses were measured. In the absorption spectra, we observed the band related to the surface plasmon resonance (SPR) in Ni nanoparticles. The broadening of SPR was observed with decrease of Ni nanoparticle size. The width of the surface plasmon band decreases 1.5 times at the lowering of temperature from 293 to 2 K because of strong electron-phonon interaction. The spectra proved the creation of nickel oxide NiO clusters and Ni2+ ions in silica glass as well.  相似文献   

7.
8.
The simplest treatment of the complex 57Fe Mössbauer absorption spectra of nanostructured Fe-Cu-Nb-B alloys within the recently developed generalized two-level relaxation model has been successfully performed. This model applied for a system of superparamagnetic particles allows one to take into account the interparticle interaction in a simpler form and to describe qualitatively a specifically asymmetric shape of Mössbauer lines with sharp outer and smeared inward sides when the conventional two-level relaxation model fails. The approach is actually an alternative way in order to evaluate the Mössbauer spectra of nanostructured ferromagnetic alloys without taking into consideration a rather wide and diverse distribution over the particle sizes.  相似文献   

9.
甘平  辜敏  卿胜兰  鲜晓东 《物理学报》2013,62(7):78101-078101
应用分光光度计测量Te/TeO2-SiO2复合薄膜的透射光谱和吸收光谱, 在480nm附近观察到Te颗粒引起的等离子体共振吸收峰; 采用Z扫描技术研究了共振(激发波长为532 nm)和非共振情况下(激发波长1064 nm) 不同电位制备薄膜的Te颗粒状态与复合薄膜的三阶非线性极化率的关系. 基于有效介质理论对复合薄膜的三阶非线性效应进行分析, 研究Te颗粒大小对Te/TeO2-SiO2复合薄膜的非线性光学性质的影响及其产生机理. 结果表明薄膜制备过电位增大, Te的粒径减小, 颗粒数量多, 颗粒分布趋于均匀, 使得金属颗粒的表面等离子体共振峰红移, 吸收强度增强, 导致三阶非线性光学效应增强, χ(3)由1064 nm的5.12×10-7 esu增大为532 nm的8.11×10-7 esu. 关键词: 碲 二氧化碲 复合薄膜 三阶非线性  相似文献   

10.
Previous studies investigating the role of the operating parameters on ultrafast laser ablative generation of gold nanoparticles have reported a wide range of nanoparticle size distribution and plasmon resonant properties. In some cases the reported role of fluence and other processing parameters is contradictory. In this systematic investigation, we deconstruct and examine the role of the component parts of fluence, namely pulse energy and ablation spot size, on nanoparticle generation. Other parameters such as exposure time and scan speed are also studied. We show that the nanoparticle average size and distribution is related to different contributions from pulse energy, pulse repetition frequency and spot size. We also correlate the average particle size and distribution with the wavelength and width of the plasmon resonance peak, and apply Mie theory in order to develop clearer physical insights into the mechanisms dominating nanoparticle generation.  相似文献   

11.
57Fe nuclear magnetic resonance (NMR) spectra of hexaferrite BaFe12O19 powder samples prepared by glass crystallization method were measured at 4.2 K and analyzed in comparison to spectra of single crystals. Samples with various mean particle dimensions were tested. NMR spectral lines corresponding to individual iron sublattices showed pronounced frequency shifts of their positions and a significant line broadening compared to single crystals. The significant contribution to the line shifts and line shape had a uniform macroscopic origin giving identical absolute value of shifts and the same line shapes for all measured lines of a particular sample. Estimations of demagnetization fields based on mean particle dimensions reasonably corresponded to the observed frequency shifts for particle mean diameter 67 nm, or had a higher value for a sample with mean diameter of 340 nm, for which a presence of domain walls was detected by NMR. In the spectrum of a sample with the smallest particles (~16 nm), an additional contribution having broader lines and faster spin-spin relaxations was found. It could be assigned to weaker exchange interactions or deviations of magnetic moment directions from the hexagonal axis in a surface layer.  相似文献   

12.
A cascade transfer of light energy to a resonance atom situated near a spherical nanoparticle and then, by a nonradiative mechanism, to the nanoparticle itself is considered. It is established that the efficiency of the cascade transfer essentially depends on the frequency and polarization of light, on the distance between the atom and the particle, on the optical properties of the particle, and on the time conditions of radiation. The rate of light absorption by a metal nanoparticle via cascade energy transfer may be 104–105 times higher than the direct absorption of light by a nanoparticle. For a fixed frequency of light, the cascade transfer of energy is a sharply selective function of the distance between the atom and the particle (the resonance width is about 10?2 of the particle radius). Atomic fluorescence exhibits similar behavior. This feature can form the basis for a new method of optical scanning microscopy and location and localization of atoms near the surface of a particle.  相似文献   

13.
It is demonstrated that the surface-enhanced Raman scattering (SERS) intensity of R6G molecules adsorbed on a Ag nanoparticle array can be controlled by tuning the size and height of the nanoparticles. A firm Ag nanoparticle array was fabricated on glass substrate by using nanosphere lithography (NSL) combined with reactive ion etching (RIE). Different sizes of Ag nanoparticles were fabricated with seed polystyrene nanospheres ranging from 430 nm to 820 nm in diameter. By depositing different thicknesses of Ag film and lifting off nanospheres from the surface of the substrate, the height of the Ag nanoparticles can be tuned. It is observed that the SERS enhancement factor will increase when the size of the Ag nanoparticles decreases and the deposition thickness of the Ag film increases. An enhancement factor as high as 2×106 can be achieved when the size of the polystyrene nanospheres is 430 nm in diameter and the height of the Ag nanoparticles is 96 nm. By using a confocal Raman mapping technique, we also demonstrate that the intensity of Raman scattering is enhanced due to the local surface plasmon resonance (LSPR) occurring in the Ag nanoparticle array.  相似文献   

14.
Using the Fourier technique in combination with the Mie theory, we study numerically the spatiotemporal evolution of the intensity of the internal optical field inside micron-sized weakly absorbing spherical particles upon diffraction by these particles of a femtosecond laser field. A number of specific features of the dynamics of the spatial intensity distribution of the femtosecond pulses inside the particles are found to depend on the pulse width, the shape of the laser beam, the size of the particles, and the geometry of their irradiation. It is shown that, under conditions of nonstationary diffraction, the internal optical field is usually excited in a resonance way, with the eigenfrequencies of one or several high-Q resonance modes of the particle falling into the central part of the original pulse spectrum. This causes a time delay of the light in the particle and a reduction of the absolute maximum in the time dependence of the internal field intensity as compared with a stationary regime. The greatest reduction of the peak occurs at exact resonance. In this case, the decrease in the peak intensity may reach several orders of magnitude. Irradiation of a particle by a narrow Gaussian beam of femtosecond duration directed toward the particle center enhances the internal field intensity as compared with the case of near-edge incidence.  相似文献   

15.
The experimental low-frequency Raman spectra of paradibromobenzene nanoparticles of 400-60 nm in size have been recorded. The line frequencies decrease with a decrease in the nanoparticle size and the line half-widths change as well. The nanoparticle sizes have been determined with an electron microscope. The nanoparticle structure has been modeled by the molecular-dynamics method and the histograms of lattice-vibration spectra has been calculated by the Dean method. When the nanoparticle sizes change from 400 to 60 nm the lattice parameter along the crystallographic axis a increase, while the parameters along the two other axes decrease. Overall, the nanoparticle structure is similar to that of paradibromobenzene single crystals.  相似文献   

16.
At low temperatures the zero-phonon lines (ZPL) in optical spectra of solids have a very small homogenous width and huge peak intensity. The lines are highly sensitive to the interactions in solids, allowing for a number of applications of the ZPL-based solid state spectroscopy. The standard theory predicts the Lorentzian shape of ZPL with T 7 dependence of its homogeneous width on T at low temperature. However, in the last years different systems have been found, in which remarkable deviations from these laws have been observed. Some generalizations of the standard theory, allowing one to explain the observed anomalous lines, are presented.  相似文献   

17.
银纳米颗粒阵列的表面增强拉曼散射效应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
程自强  石海泉  余萍  刘志敏 《物理学报》2018,67(19):197302-197302
利用具有高密度拉曼热点的金属纳米结构作为表面增强拉曼散射(SERS)基底,可以显著增强吸附分子的拉曼信号.本文通过阳极氧化铝模板辅助电化学法沉积制备了高密度银(Ag)纳米颗粒阵列;利用扫描电子显微镜和反射谱表征了样品的结构形貌和表面等离激元特性;用1, 4-苯二硫醇(1, 4-BDT)为拉曼探针分子,研究了Ag纳米颗粒阵列的SERS效应.通过优化沉积时间,制备出高SERS探测灵敏度的Ag纳米颗粒阵列,检测极限可达10~(-13)mol/L;时域有限差分法模拟结果证实了纳米颗粒间存在强的等离激元耦合作用,且发现纳米颗粒底端的局域场增强更大.研究结果表明Ag纳米颗粒阵列可作为高效的SERS基底.  相似文献   

18.
Radiation emission of silicon and aluminum plasmas produced by 40-ps laser pulses with peak intensity above 1014 W/cm2 was studied. High-resolution soft X-rayspectra of H-like and He-like ions were analyzed to determine plasma parameters. We compared the line shape of resonance transitions and their intensity ratios to corresponding dielectronic satellites and the intensities of the intercombination lines of He-like ions with the results of model calculations. Such comparisons gave average values of the electron number density Ne=(1-1.9)×1021 cm-3 and the electron temperature Te=460–560 eV for Si plasmas and about 560 eV for Al plasmas produced by the first and the second laser harmonics. The plasma size is about 100 μm. According to our estimations, more than 1012 photons were produced within the resonance line spectral width and in the solid angle 2π during the total decay period. PACS 41.50.+h; 52.25.Os; 52.50.Jm  相似文献   

19.
Electron paramagnetic resonance results of small lithium particles created in lithium hydride by γ irradiations are presented. The EPR line was found to be inhomogeneous and the spin lattice relaxation time for conduction electrons to be unusually large (10?4?10?6s). We point out that the EPR line width is induced by the dispersion of the total nuclear magnetic moment inside the small particle. We assume that the size distribution of lithium particles created by γ irradiation is a logarithmiconormal distribution. Different experimental results confirm this model.  相似文献   

20.
We have investigated the ferromagnetic resonance (FMR) response of as-made and temperature annealed FePt magnetic nanoparticles. The as-made nanoparticles, which have been fabricated by a chemical route, crystallize in the low magnetic anisotropy fcc phase and have a diameter in the range of 2-4 nm. The annealing of the particles at high temperatures (TA=550, 650 and C) in an inert Ar atmosphere produces a partial transformation to the high magnetocrystalline anisotropy L10 phase, with a significant increase in particle size and size distribution. FMR measurements at X-band (9.5 GHz) and Q-band (34 GHz) show a single relatively narrow line for the as-synthesized particles and a structure of two superimposed lines for the three annealed samples. The origin of this line shape has been attributed to the presence of the disordered fcc phase. Assuming that the system consists of a collection of identical particles with a random distribution of easy axes, we have been able to estimate a mean value for the magnetic anisotropy constant of the particles in the fcc phase, K∼2×106 erg/cm3. The measured line shape in the annealed samples can be explained if we consider that the magnetic anisotropy of the particles has a gaussian distribution with a relatively broad width.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号