首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The 15-cobalt-substituted polyoxotungstate [Co(6)(H(2)O)(30){Co(9)Cl(2)(OH)(3)(H(2)O)(9)(beta-SiW(8)O(31))(3)}](5-) (1) has been characterized by single-crystal XRD, elemental analysis, IR, electrochemistry, magnetic measurements, and EPR. Single-crystal X-ray analysis was carried out on Na(5)[Co(6)(H(2)O)(30){Co(9)Cl(2)(OH)(3)(H(2)O)(9)(beta-SiW(8)O(31))(3)}].37H(2)O, which crystallizes in the hexagonal system, space group P6(3)/m, with a = 19.8754(17) A, b = 19.8754(17) A, c = 22.344(4) A, alpha= 90 degrees, beta = 90 degrees, gamma = 120 degrees, and Z = 2. The trimeric polyanion 1 has a core of nine Co(II) ions encapsulated by three unprecedented (beta-SiW(8)O(31)) fragments and two Cl(-) ligands. This central assembly {Co(9)Cl(2)(OH)(3)(H(2)O)(9)(beta-SiW(8)O(31))(3)}(17-) is surrounded by six antenna-like Co(II)(H(2)O)(5) groups resulting in the satellite-like structure 1. Synthesis of 1 is accomplished in a simple one-pot procedure by interaction of Co(II) ions with [gamma-SiW(10)O(36)](8-) in aqueous, acidic NaCl medium (pH 5.4). Polyanion 1 was studied by cyclic voltammetry as a function of pH. The current intensity of its Co(II) centers was compared with that of free Co(II) in solution. Our results suggest that 1 keeps its integrity in solution. Magnetic susceptibility results show the presence of both antiferro- and ferromagnetic coupling within the (Co(II))(9) core. A fully anisotropic Ising model has been employed to describe the exchange-coupling and yields g = 2.42 +/- 0.01, J(1) = 17.0 +/- 1.5 cm(-1), and J(2) = -13 +/- 1 cm(-(1). Variable frequency EPR studies reveal an anisotropic Kramer's doublet.  相似文献   

2.
The novel heteropolyanion [Cu(4)K(2)(H(2)O)(8)(alpha-AsW(9)O(33))(2)](8)(-) (1) has been synthesized and characterized by IR spectroscopy, elemental analysis, and magnetic studies. Single-crystal X-ray analysis was carried out on [K(7)Na[Cu(4)K(2)(H(2)O)(6)(alpha-AsW(9)O(33))(2)].5.5H(2)O](n)(K(7)Na-1), which crystallizes in the tetragonal system, space group P42(1)m, with a = 16.705(4) A, b = 16.705(4) A, c = 13.956(5) A, and Z = 2. Interaction of the lacunary [alpha-AsW(9)O(33)](9)(-) with Cu(2+) ions in neutral, aqueous medium leads to the formation of the dimeric polyoxoanion 1 in high yield. Polyanion 1 consists of two alpha-AsW(9)O(33) units joined by a cyclic arrangement of four Cu(2+) and two K(+) ions, resulting in a structure with C(2)(v)() symmetry. All copper ions have one terminal water molecule, resulting in square-pyramidal coordination geometry. Three of the copper ions are adjacent to each other and connected via two micro(3)-oxo bridges. EPR studies on K(7)Na-1 and also on Na(9)[Cu(3)Na(3)(H(2)O)(9)(alpha-AsW(9)O(33))(2)].26H(2)O (Na(9)-2) over 2-300 K yielded g values that are consistent with a square-pyramidal coordination around the copper(II) ions in 1 and 2. No hyperfine structure was observed due to the presence of strong spin exchange, but fine structure was observed for the excited (S(T) = 3/2) state of Na(9)-2 and the ground state (S(T) = 1) of K(7)Na-1. The zero-field (D) parameters have also been determined for these states, constituting a rare case wherein one observes EPR from both the ground and the excited states. Magnetic susceptibility data show that Na(9)-2 has antiferromagnetically coupled Cu(2+) ions, with J = -1.36 +/- 0.01 cm(-)(1), while K(7)Na-1 has both ferromagnetically and antiferromagnetically coupled Cu(2+) ions (J(1) = 2.78 +/- 0.13 cm(-)(1), J(2) = -1.35 +/- 0.02 cm(-)(1), and J(3) = -2.24 +/- 0.06 cm(-)(1)), and the ground-state total spins are S(T) = 1/2 in Na(9)-2 and S(T) = 1 in K(7)Na-1.  相似文献   

3.
The mononuclear macrocyclic complexes [Au(I)([9]aneS2O)2]BF4 x MeCN 1a, [Au(II)([9]aneS2O)2](BF4)2 x 2 MeCN 2a, and [Au(III)([9]aneS2O)2](ClO4)6(H5O2)(H3O)2 3 ([9]aneS2O = 1-oxa-4,7-dithiacyclononane) have been prepared and structurally characterized by single crystal X-ray crystallography. The oxidation of [Au([9]aneS2O)2](+) to [Au([9]aneS2O)2](2+) involves a significant reorganization of the co-ordination sphere from a distorted tetrahedral geometry in [Au([9]aneS2O)2](+) [Au-S 2.3363(12), 2.3877(12), 2.6630(11), 2.7597(13) A] to a distorted square-planar co-ordination geometry in [Au([9]aneS2O)2](2+). The O-donors in [Au([9]aneS2O)2](2+) occupy the axial positions about the Au(II) center [Au...O = 2.718(2) A] with the S-donors occupying the equatorial plane [Au-S 2.428(8) and 2.484(8) A]. [Au([9]aneS2O)2](3+) shows a co-ordination sphere similar to that of [Au([9]aneS2O)2](2+) but with significantly shorter axial Au...O interactions [2.688(2) A] and equatorial Au-S bond lengths [2.340(4) and 2.355(6) A]. The cyclic voltammogram of 1 in MeCN (0.2 M NBu4PF6, 253 K) at a scan rate of 100 mV s(-1) shows an oxidation process at E(p)(a) = +0.74 V and a reduction process at E(p)(c) = +0.41 V versus Fc(+)/Fc assigned to the two-electron Au(III/I) couple and a second reduction process at E(p)(c) = +0.19 V assigned to the Au(I/0) couple. This electrochemical assignment is confirmed by coulometric and UV-vis spectroelectrochemical measurements. Multifrequency EPR studies of the mononuclear Au(II) complex [Au([9]aneS2O)2](2+) in a fluid solution at X-band and as frozen solutions at L-, S-, X-, K-, and Q-band reveal g(iso) = 2.0182 and A(iso) = -44 x 10(-4) cm(-1); g(xx) = 2.010, g(yy) = 2.006, g(zz) = 2.037; A(xx) = -47 x 10(-4) cm(-1), A(yy) = -47 x 10(-4) cm(-1), A(zz) = -47 x 10(-4) cm(-1); P(xx) = -18 x 10(-4) cm(-1), P(yy) = -10 x 10(-4) cm(-1), and P(zz) = 28 x 10(-4) cm(-1). DFT calculations predict a singly occupied molecular orbital (SOMO) with 27.2% Au 5d(xy) character, consistent with the upper limit derived from the uncertainties in the (197)Au hyperfine parameters. Comparison with [Au([9]aneS3)2](2+) reveals that the nuclear quadrupole parameters, P(ii) (i = x, y, z) are very sensitive to the nature of the Au(II) co-ordination sphere in these macrocyclic complexes. The observed geometries and bond lengths for the cations [Au([9]aneS2O)2](+/2+/3+) reflect the preferred stereochemistries of d(10), d(9), and d(8) metal ions, respectively, with the higher oxidation state centers being generated at higher anodic potentials compared to the related complexes [Au([9]aneS3)2](+/2+/3+).  相似文献   

4.
New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a Cu ion from the other unit. The magnetic properties of the gadolinium-containing complexes have been determined. Ferromagnetic exchange interactions within the trinuclear [Cu(2)Gd] motifs occur. In the compounds 4 and 7, the [Ni(mnt)(2)](*-) radical anions contribution to the magnetization is clearly observed in the high-temperature regime, and most of it vanishes upon temperature decrease, very likely because of the rather strong antiferromagnetic exchange interactions between the open-shell species. The extent of the exchange interaction in the compound 7, which was found to be antiferromagnetic, between the coordinated Cu center and the corresponding [Ni(mnt)(2)](*-) radical anion, bearing mostly a 3p spin type, was estimated through CASSCF/CASPT2 calculations. Compound 6 exhibits a slow relaxation of the magnetization.  相似文献   

5.
Two novel organic-inorganic hybrid tungsto- and molybdo-telurates having formula [{Na(4)(H(2)O)(14)}{Cu(gly)}(2)][TeMo(6)O(24)] (1){gly = glycine} and [{Cu(en)(2)}(3){TeW(6)O(24)}]·6H(2)O {en = ethyline-diamine} (2) based on Anderson type heteropolyoxometalates (POMs) have been synthesized and characterized by X-ray crystallography. Common structural feature of both 1 and 2 is the presence of a unique 1D open rack-like architecture, where the disc shaped Anderson POMs act as steps and cationic Cu-organic complexes act as handles of the rack. In 1 the independent structural unit is a 1D coordination polymer with the above mentioned rack type architecture, while in 2, these independent rack-like architectures are further extended to a 2D coordination polymer. Heterogeneous catalysis for the epoxidation of cyclohexene and styrene by complexes 1 and 2 showed very good catalytic efficiency resulting epoxides of ~60% yield, with dialcohol formed by the hydrolysis of epoxides, as the other major product (~28%). Cyclic voltammetric studies of [{Na(4)(H(2)O)(14)}{Cu(gly)}(2)][TeMo(6)O(24)] (1) in aqueous KCl solution indicates that the redox changes occur only on the copper centers and supported by carrying out parallel experiments on the precursors like ([Cu(gly)(2)](2+) and [TeMo(6)O(24)](6-), under the identical experimental conditions. The E(1/2) = 0.662, -0.142 and -0.332 V(vs. SCE) correspond to Cu(III) → Cu(II), Cu(II) → Cu(I) and Cu(I) → Cu(0) reductions, respectively. Thermal analyses reveal identical phase transition reactions with an exothermic peak in the DTA curve at 380 °C for 1 and an endothermic peak appears at comparatively higher temperature (408 °C) for 2 manifesting the higher stability of tungstane based POM over the molybdenum ones. EPR as well as magnetic moment results indicate that both the complexes 1 and 2 are paramagnetic with one unpaired electron per copper(II) ion.  相似文献   

6.
Interaction of the dilacunary polyanion precursor [gamma-GeW(10)O(36)](8-) with Fe(3+) ions in aqueous buffer medium (pH 4.8) results in the formation of two dimeric tungstogermanates depending on the reactant ratios. When using an Fe3+ to [gamma-GeW(10)O(36)](8-) ratio of 1:1, the asymmetric anion [K(H(2)O)(beta-Fe(2)GeW(10)O(37)(OH))(gamma-GeW(10)O(36))](12-) (1) is formed, whereas [{beta-Fe(2)GeW(10)O(37)(OH)2}2]12- (2) is formed when using a ratio of 2:1. Single-crystal X-ray analyses were carried out on Cs(3)K(9)[K(H(2)O)(beta-Fe(2)GeW(10)O(37)(OH))(gamma-GeW(10)O(36))].19H(2)O (CsK-1), which crystallizes in the triclinic system, space group P1, a = 11.4547(2), b = 19.9181(5), c = 21.0781(6) A, alpha = 66.7977(12), beta = 89.1061(12), gamma = 84.4457(11) degrees, and Z = 2 and on Cs(7)K(4)Na[{beta-Fe(2)GeW(10)O(37)(OH)(2)}(2)].39H(2)O (CsKNa-2), which crystallizes in the monoclinic system, space group C2/m, a = 32.7569(13), b = 12.2631(5), c = 14.2895(5) A, beta = 104.135(2) degrees , and Z = 2. Polyanion 1 consists of (beta-Fe(2)GeW(10)O(37)) and (gamma-GeW(10)O(36)) units linked via two Fe-O-W bridges and a central potassium ion. Two equivalent FeO(6) octahedra complete the belt of the beta-Keggin unit and link to the (gamma-GeW(10)O(36)) fragment. On the other hand, 2 consists of two {beta-Fe(2)GeW(10)O(37)(OH)(2)} units with four bridging hydroxo groups linking the four Fe(3+) ions, forming an eight-membered ring. The magnetic properties of CsK-1 and CsKNa-2 have been studied by magnetic susceptibility and magnetization measurements and fitted according to an isotropic exchange model. Both polyanions 1 and 2 exhibit diamagnetic ground states with a small amount of paramagnetic impurity. Electrochemistry studies on 1 and 2 were carried out in a pH 5 acetate medium. The two polyanions have in common the simultaneous reduction of all of their Fe(3+) centers. This observation suggests the existence of identical or almost-identical influences on these centers and their equivalence, especially in the reduced state. Controlled potential coulometry results indicate the presence of two Fe(3+) centers in 1 and four in 2. The splitting of the tungsten wave of 1 compared to the single tungsten wave of 2 is attributed to a difference in acid-base properties of the polyanions. Voltammetric peak-potential shifts as a function of pH were studied in the case of 2.  相似文献   

7.
The iron(III)-substituted tungstogermanate [Fe6(OH)3(A-alpha-GeWO34(OH)3)2]11- (1) has been synthesized and characterized by IR, elemental analysis, SQUID magnetometry, electron paramagnetic resonance (EPR), and electrochemistry. Single-crystal X-ray analysis was carried out on Cs4Na7[Fe6(OH)3(A-alpha-GeW9O34(OH)3)2] x 30H2O, which crystallizes in the monoclinic system, space group C2/m, with a = 36.981(4) A, b = 16.5759(15) A, c = 16.0678(15) A, beta = 95.311(3) degrees, and Z = 4. Polyanion 1 consists of two (A-alpha-GeW9O34) Keggin moieties linked via six Fe3+ ions, leading to a double-sandwich structure. The equivalent iron centers represent a trigonal prismatic Fe6 fragment, resulting in virtual D3h symmetry for 1. Electrochemistry studies revealed that 1 is stable in solution from pH 3 to at least pH 7. In pH = 3 media the reduction of the six Fe3+ centers was featured by a single voltammetric wave for most supporting electrolytes used. In that case, whatever the scan rate from 1000 mV x s(-1) down to 2 mV x s(-1), no splitting of the single Fe-wave of 1 was observed. The acetate medium induced a partial splitting of the wave, and this separation is enhanced with increasing pH. Remarkable efficiency of 1 in the electrocatalytic reduction of nitrite, nitric oxide, and nitrate is demonstrated. Magnetic susceptibility (chi) measurements indicate a diamagnetic (S(T) = 0) ground state, with an average J = -12 cm(-1) and g = 2.00. EPR studies confirm that the ground state is indeed diamagnetic, since the EPR signal intensity steadily decreases without any line broadening as the temperature is lowered and becomes unobservable below about 50 K. The signal is a single broad peak at all frequencies (90-370 GHz), ascribed to the thermally accessible excited states. Its g(iso) is 1.992 51, as expected for a high-spin Fe3+-containing species, and supports the chi data analysis.  相似文献   

8.
In order to contribute to an understanding of the effects of thioether sulfur ligation in copper-O(2) reactivity, the tetradentate ligands L(N3S) (2-ethylthio-N,N-bis(pyridin-2-yl)methylethanamine) and L(N3S')(2-ethylthio-N,N-bis(pyridin-2-yl)ethylethanamine) have been synthesized. Corresponding copper(I) complexes, [CuI(L(N3S))]ClO(4) (1-ClO(4)), [CuI(L(N3S))]B(C(6)F(5))(4) (1-B(C(6)F(5))(4)), and [CuI(L(N3S'))]ClO(4) (2), were generated, and their redox properties, CO binding, and O(2)-reactivity were compared to the situation with analogous compounds having all nitrogen donor ligands, [CuI(TMPA)(MeCN)](+) and [Cu(I)(PMAP)](+) (TMPA = tris(2-pyridylmethyl)amine; PMAP = bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine). X-ray structures of 1-B(C(6)F(5))(4), a dimer, and copper(II) complex [Cu(II)(L(N3S))(MeOH)](ClO(4))(2) (3) were obtained; the latter possesses axial thioether coordination. At low temperature in CH(2)Cl(2), acetone, or 2-methyltetrahydrofuran (MeTHF), 1 reacts with O(2) and generates an adduct formulated as an end-on peroxodicopper(II) complex [{Cu(II)(L(N3S))}(2)(mu-1,2-O(2)(2-))](2+) (4)){lambda(max) = 530 (epsilon approximately 9200 M(-1) cm(-1)) and 605 nm (epsilon approximately 11,800 M(-1) cm(-1))}; the number and relative intensity of LMCT UV-vis bands vary from those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {lambda(max) = 524 nm (epsilon = 11,300 M(-1) cm(-1)) and 615 nm (epsilon = 5800 M(-1) cm(-1))} and are ascribed to electronic structure variation due to coordination geometry changes with the L(N3S) ligand. Resonance Raman spectroscopy confirms the end-on peroxo-formulation {nu(O-O) = 817 cm(-1) (16-18O(2) Delta = 46 cm(-1)) and nu(Cu-O) = 545 cm(-1) (16-18O(2) Delta = 26 cm(-1)); these values are lower in energy than those for [{Cu(II)(TMPA)}(2)(O(2)(2-))](2+) {nu(Cu-O) = 561 cm(-1) and nu(O-O) = 827 cm(-1)} and can be attributed to less electron density donation from the peroxide pi* orbitals to the Cu(II) ion. Complex 4 is the first copper-dioxygen adduct with thioether ligation; direct evidence comes from EXAFS spectroscopy {Cu K-edge; Cu-S = 2.4 Angstrom}. Following a [Cu(I)(L(N3S))](+)/O(2) reaction and warming, the L(N3S) thioether ligand is oxidized to the sulfoxide in a reaction modeling copper monooxygenase activity. By contrast, 2 is unreactive toward dioxygen probably due to its significantly increased Cu(II)/Cu(I) redox potential, an effect of ligand chelate ring size (in comparison to 1). Discussion of the relevance of the chemistry to copper enzyme O(2)-activation, and situations of biological stress involving methionine oxidation, is provided.  相似文献   

9.
Shivaiah V  Das SK 《Inorganic chemistry》2005,44(24):8846-8854
Two Anderson-type heteropolyanion-supported copper phenanthroline complexes, [Al(OH)6Mo6O18[Cu(phen)(H2O)2]2]1+ (1c) and [Al(OH)6Mo6O18[Cu(phen)(H2O)Cl]2]1- (1a) complement their charges in one of the title compounds [Al(OH)6Mo6O18[Cu(phen)(H2O)2]2][Al(OH)6Mo6O18[Cu(phen)(H2O)Cl]2].5H2O [1c][1a].5 H2O 1. Similar charge complementarity exists in the chromium analogue, [Cr(OH)6Mo6O18[Cu(phen)(H2O)2]2][Cr(OH)6Mo6O18[Cu(phen)(H2O)Cl]2].5 H2O [2c][2a].5 H2O 2. The chloride coordination to copper centers of 1a and 2a makes the charge difference. In both compounds, the geometries around copper centers are distorted square pyramidal and those around aluminum/chromium centers are distorted octahedral. Three lattice waters, from the formation of intermolecular O-H.....O hydrogen bonds, have been shown to self-assemble into an "acyclic water trimer" in the crystals of both 1 and 2. The title compounds have been synthesized in a simple one pot aqueous wet-synthesis consisting of aluminum/chromium chloride, sodium molybdate, copper nitrate, phenanthroline, and hydrochloric acid, and characterized by elemental analyses, EDAX, IR, diffuse reflectance, EPR, TGA, and single-crystal X-ray diffraction. Both compounds crystallize in the triclinic space group P. Crystal data for 1: a = 10.7618(6), b = 15.0238(8), c = 15.6648(8) angstroms, alpha = 65.4570(10), beta = 83.4420(10), gamma = 71.3230(10), V = 2182.1(2) angstroms3. Crystal data for 2: a = 10.8867(5), b = 15.2504(7), c = 15.7022(7) angstroms, alpha = 64.9850(10), beta = 83.0430(10), gamma = 71.1570(10), V = 2235.47(18) angstroms3. In the electronic reflectance spectra, compounds 1 and 2 exhibit a broad d-d band at approximately 700 nm, which is a considerable shift with respect to the value of 650-660 nm for a square-pyramidal [Cu(phen)2L] complex, indicating the coordination of [M(OH)6Mo6O18]3- POM anions (as a ligand) to the monophenanthroline copper complexes to form POM-supported copper complexes 1c, 1a, 2c, and 2a. The ESR spectrum of compound 1 shows a typical axial signal for a Cu2+ (d9) system, and that of compound 2, containing both chromium(III) and copper(II) ions, may reveal a zero-field-splitting of the central Cr3+ ion of the Anderson anion, [Cr(OH)6Mo6O18]3-, with an intense peak for the Cu2+ ion.  相似文献   

10.
Bi LH  Kortz U 《Inorganic chemistry》2004,43(25):7961-7962
The dimeric, pentacopper(II) substituted tungstosilicate [Cu(5)(OH)(4)(H(2)O)(2)(A-alpha-SiW(9)O(33))(2)](10-) (1) has been synthesized in good yield using a one-pot procedure by reaction of Cu(2+) ions with the trilacunary precursor salt K(10)[A-alpha-SiW(9)O(34)]. The title polyanion represents the first polyoxotungstate substituted by 5 copper centers and the central copper-hydroxo-aqua fragment is completely unprecedented. In the course of the reaction, two [A-alpha-SiW(9)O(34)](10-) Keggin half-units have fused in an asymmetrical fashion resulting in the lacunary polyoxotungstate [Si(2)W(18)O(66)](16-). The vacancy in this species is stabilized by a magnetic cluster of five octahedrally coordinated Cu(2+) ions resulting in polyanion 1 with C(2v) symmetry.  相似文献   

11.
We demonstrate for the first time that the superlacunary polyanion [H(2)P(4)W(24)O(94)](22)(-) reacts with electrophiles. One-pot reaction of this precursor polyanion with dimethyltin dichloride in aqueous acidic medium results in the hybrid organic-inorganic [{Sn(CH(3))(2)}(4)(H(2)P(4)W(24)O(92))(2)](28)(-) (1). Single-crystal X-ray analysis was carried out on K(17)Li(11)[{Sn(CH(3))(2)}(4)(H(2)P(4)W(24)O(92))(2)].51H(2)O (1a), which crystallizes in the tetragonal system, space group P4(2)/nmc, a = b = 21.5112(17) and c = 27.171(3) A, and Z = 2. Polyanion 1 is composed of two (P(4)W(24)O(92)) fragments that are linked by four equivalent diorganotin groups. The unprecedented assembly 1 has D(2)(d)() symmetry and contains a hydrophobic pocket in the center of the molecule. The cyclic voltammetry pattern of 1 is constituted by a first broad, 16-electron reduction wave followed by a second large current intensity wave. No splitting of the first reduction wave could be obtained at moderate scan rate values, even though two well-separated oxidation processes are associated with it. The characteristics of the first wave are clearly different from those obtained for the polyanion precursor [H(2)P(4)W(24)O(94)](22)(-) and the related, wheel-shaped [H(7)P(8)W(48)O(184)](33)(-), which is due to the {Sn(CH(3))(2)} fragments in 1. However, no feature was observed in the voltammogram which could be associated with reduction of the Sn centers.  相似文献   

12.
Two new Cu(II) azido polyoxometalates compounds have been synthesized, and their structures were determined by X-ray crystallography. The compound Na(14)[SiW(9)O(34)Cu(3)(N(3))(2)(OH)(H(2)O)](2) x 24H(2)O (1) is built from two [SiW(9)O(34)Cu(3)(mu(1,1,3)-N(3))(2)(mu-OH)(H(2)O)](7-) subunits where the copper centers, connected by two azido ligands and one hydroxo group, form a nearly equilateral triangle. The two subunits are related by an inversion center and connected via the two mu(1,1,3)-N(3) ligands in an end-to-end fashion, affording a hexanuclear Cu(II) cluster. Linkage of these fragments via Cu-O=W bonds leads to a bidimensional arrangement of the polyoxometalate units. The complex LiK(14)Na(9)[P(8)W(48)O(184)Cu(20)(N(3))(6)(OH)(18)] x 60H(2)O (2) consists of two {Cu(5)(OH)(4)}(6+) and two {Cu(5)(OH)(2)(mu(1,1,3,3)-N(3))}(7+) subunits connected via four mu-OH and four mu(1,1)-N(3) additional ligands, the 20 copper centers being encapsulated in the [P(8)W(48)O(184)](40-) crown polyoxotungstate ligand. 1 represents the first multidimensional compound based on azido polyoxometalate (POM) units, and 2 represents by far the largest azido POM complex isolated to date. Magnetic measurements revealed an overall antiferromagnetic behavior for both compounds. Nevertheless, the study of the variation of the magnetization with the applied field indicates that 1 possesses a triplet ground state, which can be attributed to weak ferromagnetic interaction between the S = 1/2 triangular subunits. The stability of 1 and 2 evidenced by UV-vis spectroscopy and gel filtration chromatography, in particular at pH 5, has allowed a detailed study of their redox and electrocatalytic properties. For both compounds, the stability of the Cu(II)/Cu(I) couple is remarkable compared with the observations made in other Cu(II)-substituted POMs. Electrochemical quartz crystal microbalance measurements clearly demonstrate that the formation of the Cu(I) species occurs neatly without the formation of Cu(0). The accumulation of such Cu(II) centers within the complexes is a favorable condition to envision applications involving several electrons. The electrocatalytic reduction of dioxygen and hydrogen peroxide was achieved efficiently and has shown that the reactivity increases with the nuclearity and/or the Cu/W ratio of the POM complex. The dioxygen reduction is an overall four-electron process with water as the final product. Finally, the reduction of the W centers triggers a strong electrocatalysis of solvent reduction.  相似文献   

13.
The palladium-substituted tungstoantimonate(III) [Cs(2)Na(H(2)O)(10)Pd(3)(alpha-SbW(9)O(33))(2)](9-) (1) has been synthesized and characterized by IR, elemental analysis, and electrochemistry. Single-crystal X-ray analysis was carried out on Cs(3)KNa(5)[Cs(2)Na(H(2)O)(10)Pd(3)(SbW(9)O(33))(2)].16.5H(2)O, which crystallizes in the monoclinic system, space group P2(1)/m, with a = 13.3963(13) A, b = 19.5970(19) A, c = 18.1723(17) A, beta = 100.416(2) degrees, and Z = 2. Polyanion 1 represents the first structurally characterized palladium(II)-substituted polyoxometalate. The title polyoxoanion consists of two (alpha-Sb(III)W(9)O(33)) Keggin moieties linked via three Pd(2+) ions leading to a sandwich-type structure. The palladium centers are equivalent, and they are coordinated in a square-planar fashion. The central belt of 1 contains also one sodium and two cesium ions which reduces the symmetry of the polyanion to C(2)(v)(). Polyanion 1 was synthesized in good yield by reaction of Pd(CH(3)COO)(2) with Na(9)[SbW(9)O(33)] in aqueous acidic medium (pH 4.8). A cyclic voltammetry study of polyanion 1 in a pH 5 medium gives essentially the same characteristics as those observed for the deposition of Pd(0) on the glassy carbon electrode surface from Pd(2+) solutions. The film thickness increases with the number of potential cycles or the duration of potentiostatic electrolysis. The particularly sharp hydrogen sorption/desorption pattern indicates the excellent quality of the Pd(0) deposit from polyanion 1.  相似文献   

14.
Magnetic susceptibility and EPR studies show that trinuclear Cu(II)-pyrazolato complexes with a Cu(3)(mu3-X)2 core (X = Cl, Br) are ferromagnetically coupled: J(Cu-Cu) = +28.6 cm(-1) (X = Cl), +3.1 cm(-1) (X = Br). The orderly transition from an antiferromagnetic to a ferromagnetic exchange among the Cu centers of Cu(3)(mu3-X) complexes, X = O, OH, Cl, Br, follows the change of the Cu-X-Cu angle from 120 degrees to approximately 80 degrees. The crystal structures of [Bu4N]2"[Cu3(mu3-Br)2(mu-pz*)3Br3] (pz* = pz (1a) or 4-O2N-pz (1b), pz = pyrazolato anion, C(3)H(3)N(2)(1-)) are presented.  相似文献   

15.
The Pd(II) complexes [Pd([9]aneS(3))(2)](PF(6))(2)·2MeCN (1) ([9]aneS(3) = 1,4,7-trithiacyclononane) and [Pd([18]aneS(6))](PF(6))(2) (2) ([18]aneS(6) = 1,4,7,10,13,16-hexathiacyclooctadecane) can be oxidized electrochemically or chemically oxidized with 70% HClO(4) to [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+), respectively. These centers have been characterized by single crystal X-ray diffraction, and by UV/vis and multifrequency electron paramagnetic resonance (EPR) spectroscopies. The single crystal X-ray structures of [Pd(III)([9]aneS(3))(2)](ClO(4))(6)·(H(3)O)(3)·(H(2)O)(4) (3) at 150 K and [Pd([18]aneS(6))](ClO(4))(6)·(H(5)O(2))(3) (4) at 90 K reveal distorted octahedral geometries with Pd-S distances of 2.3695(8), 2.3692(8), 2.5356(9) and 2.3490(6), 2.3454(5), 2.5474(6) ?, respectively, consistent with Jahn-Teller distortion at a low-spin d(7) Pd(III) center. The Pd(II) compound [Pd([9]aneS(3))(2)](PF(6))(2) shows a one-electron oxidation process in MeCN (0.2 M NBu(4)PF(6), 293 K) at E(1/2) = +0.57 V vs. Fc(+)/Fc assigned to a formal Pd(III)/Pd(II) couple. Multifrequency (Q-, X-, S-, and L-band) EPR spectroscopic analysis of [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+) gives g(iso) = 2.024, |A(iso(Pd))| = 18.9 × 10(-4) cm(-1); g(xx) = 2.046, g(yy) = 2.041, g(zz) = 2.004;?|A(xx(Pd))| = 24 × 10(-4) cm(-1), |A(yy(Pd))| = 22 × 10(-4) cm(-1), |A(zz(Pd))| = 14 × 10(-4) cm(-1), |a(xx(H))| = 4 × 10(-4) cm(-1), |a(yy(H))| = 5 × 10(-4) cm(-1), |a(zz(H))| = 5.5 × 10(-4) cm(-1) for [Pd([9]aneS(3))(2)](3+), and g(iso) = 2.015, |A(iso(Pd))| = 18.8× 10(-4) cm(-1); g(xx) = 2.048 g(yy) = 2.036, g(zz) = 1.998; |a(xx(H))| = 5, |a(yy(H))| = 5, |a(zz(H))| = 6 × 10(-4) cm(-1); |A(xx(Pd))| = 23× 10(-4) cm(-1), |A(yy(Pd))| = 22 × 10(-4) cm(-1), |A(zz(Pd))| = 4 × 10(-4) cm(-1) for [Pd([18]aneS(6))](3+). Both [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+) exhibit five-line superhyperfine splitting in the g(zz) region in their frozen solution EPR spectra. Double resonance spectroscopic measurements, supported by density functional theory (DFT) calculations, permit assignment of this superhyperfine to through-bond coupling involving four (1)H centers of the macrocyclic ring. Analysis of the spin Hamiltonian parameters for the singly occupied molecular orbital (SOMO) in these complexes gives about 20.4% and 25% Pd character in [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+), respectively, consistent with the compositions calculated from scalar relativistic DFT calculations.  相似文献   

16.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

17.
An unprecedented organic-inorganic hybrid {[Cu(6)L(6)(H(2)O)(3)][Nb(10)V(4)O(40)(OH)(2)]}(2)·13H(2)O (1) (L = 1,10-phenanthroline) containing the unreported {Nb(10)V(4)O(40)(OH)(2)}(12-) building blocks has been successfully synthesized and its photoluminescent properties, IR spectra, thermogravimetric analyses and single-crystal X-ray diffraction were investigated.  相似文献   

18.
Hydrothermal reactions of 1,2,4-triazole with the appropriate copper salt have provided eight structurally unique members of the Cu/triazolate/X system, with X = F-, Cl-, Br-, I-, OH-, and SO4(2-). The anionic components X of [Cu3(trz)4(H2O)3]F2 (1) and [Cu6(trz)4Br]Cu4Br4(OH) (4) do not participate in the framework connectivity, acting as isolated charge-compensating counterions. In contrast, the anionic subunits X of [Cu(II)Cu(I)(trz)Cl2] (2), [Cu6(trz)4Br2] (3), [Cu(II)Cu(I)(trz)Br2] (5), [Cu3(trz)I2] (6), [Cu6(II)Cu2(I)(trz)6(SO4)3(OH)2(H2O)] (8), and [Cu4(trz)3]OH.7.5H2O (9.7.5H2O) are intimately involved in the three-dimensional connectivities. The structure of [Cu(II)Cu(I)(trz)2][Cu3(I)I4] (7) is constructed from two independent substructures: a three-dimensional cationic {Cu2(trz)2}n(n+) component and {Cu3I4}n(n-) chains. Curiously, four of the structures are mixed-valence Cu(I)/Cu(II) materials: 2, 5, 7, and 8. The only Cu(II) species is 1, while 3, 4, 6, and 9.7.5H2O exhibit exclusively Cu(I) sites. The magnetic properties of the Cu(II) species 1 and of the mixed-valence materials 5, 7, 8, and the previously reported [Cu3(trz)3OH][Cu2Br4] have been studied. The temperature-dependent magnetic susceptibility of 1 conforms to a simple isotropic model above 13 K, while below this temperature, there is weak ferromagnetic ordering due to spin canting of the antiferromagnetically coupled trimer units. Compounds 5 and 7 exhibit magnetic properties consistent with a one-dimensional chain model. The magnetic data for 8 were fit over the temperature range 2-300 K using the molecular field approximation with J = 204 cm(-1), g = 2.25, and zJ' = -38 cm(-1). The magnetic properties of [Cu3(trz)3OH][Cu2Br4] are similar to those of 8, as anticipated from the presence of similar triangular {Cu3(trz)3(mu3-OH)}(2+) building blocks. The Cu(I) species 3, 4, 6, and 9 as well as the previously reported [Cu(5)(trz)3Cl2] exhibit luminescence thermochromism. The spectra are characterized by broad emissions, long lifetimes, and significant Stokes' shifts, characteristic of phosphorescence.  相似文献   

19.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

20.
Rate constants for the reactions of OH radicals and NO3 radicals with O,O-diethyl methylphosphonothioate [(C(2)H(5)O)(2)P(S)CH(3); DEMPT] and O,O,O-triethyl phosphorothioate [(C(2)H(5)O)(3)PS; TEPT] have been measured using relative rate methods at atmospheric pressure of air over the temperature range 296-348 K for the OH radical reactions and at 296 +/- 2 K for the NO(3) radical reactions. At 296 +/- 2 K, the rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were 20.4 +/- 0.8 and 7.92 +/- 0.27 for DEMPT and TEPT, respectively, and those for the NO(3) radical reactions (in units of 10(-15) cm(3) molecule(-1) s(-1)) were 2.01 +/- 0.20 and 1.03 +/- 0.10, respectively. Upper limits to the rate constants for the reactions of O(3) with DEMPT and TEPT of <6 x 10(-20) cm(3) molecule(-1) s(-1) were determined in each case. Rate constants for the OH radical reactions, measured relative to k(OH + alpha-pinene) = 1.21 x 10(-11) e(436/T) cm(3) molecule(-1) s(-1), resulted in the Arrhenius expressions k(OH + DEMPT) = 1.08 x 10(-11) e(871+/-25)/T cm(3) molecule(-1) s(-1) and k(OH + TEPT) = 8.21 x 10(-13) e(1353+/-49)/T cm(3) molecule(-1) s(-1) over the temperature range 296-348 K, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the reference rate constant. Diethyl methylphosphonate was identified and quantified from the OH radical and NO(3) radical reactions with DEMPT, with formation yields of 21 +/- 4%, independent of temperature, from the OH radical reaction and 62 +/- 11% from the NO(3) radical reaction at 296 +/- 2 K. Similarly, triethyl phosphate was identified and quantified from the OH radical and NO(3) radical reactions with TEPT, with formation yields of 56 +/- 9%, independent of temperature, from the OH radical reaction and 78 +/- 15% from the NO(3) radical reaction at 296 +/- 2 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号