首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
The ferrocene-based bis(pyrazol-1-yl)borate ligands [Fc2Bpz2] ([2]) and [Fc2BpzPh2] ([2Ph]) have been prepared (Fc: ferrocenyl; pz: pyrazol-1-yl; pzPh: 3-phenylpyrazol-1-yl). Treatment of [2] and [2Ph] with MnCl2 in THF leads to the complexes [Fc2Bpz2Mn(THF)(μ-Cl)2Mn(THF)pz2BFc2] (3) and [Fc2BpzPh2Mn(THF)Cl] (3Ph), respectively, which have been structurally characterized by X-ray crystallography. While there is clearly no ferrocene-MnII π-coordination in the solid-state structure of 3, short MnII-C5H4 contacts are established in 3Ph (shortest Mn-C distances: 2.780(2) Å, 2.872(2) Å). The cyclic voltammograms of K[2Ph] and 3Ph show the first ferrocene/ferricinium redox wave of 3Ph to be shifted anodically by 0.60 V compared with the first FeII/FeIII transition of K[2Ph].  相似文献   

2.
The complexes [Et2NH2] 3 + [BiCl6]3? (I), [NH4]+[BiI4(C5H5N)2]?·2C5H5N (II), [Ph3MeP] 2 + [BiI5]2? (III), [Ph3MeP] 2 + [BiI5(C5H5N)]2?·C5H5N (IV), [Ph3MeP] 3 + [Bi3I12]3? (V), [Ph3(i-Pr)P] 3 + [Bi3I12]3?·2Me2C=O (VI), [Ph3BuP] 2 + [Bi2I8·2Me2C=O]2? (VII), and [Ph3BuP] 2 + [Bi2I8·2Me2S=O]2? (VIII) were obtained by reactions of bismuth iodide with ammonium and phosphonium iodides in acetone, pyridine, or dimethyl sulfoxide.  相似文献   

3.
We report the use of triorganotin fragments R2L1-2Sn containing N,C,N and O,C,O-ligands L1-2(L1 = C6H3(Me2NCH2)2-2,6, L2 = C6H3(tBuOCH2)2-2,6) on stabilization of both thiol-form in R2L1-2Sn-2-SPy (2-SPy = pyridine-2-thiolate) and thione-form in R2L1-2Sn(mimt) (mimt = 1-methylimidazole-2-thiolate) of the polar groups. Treatment of ionic organotin compounds [Me2L1Sn]+[Cl] (1) and [Ph2L2Sn]+[OTf] (2) with appropriate sodium salts Na-2-SPy and Na(mimt) resulted in the isolation of Me2L1Sn-2-SPy (3), Ph2L2Sn-2-SPy (4), Me2L1Sn(mimt) (5), Ph2L2Sn(mimt) (6). While polar group 2-SPy exists in its thiol-tautomeric form in compounds 3 and 4, the second polar group (mimt) has been stabilized as the thione-tautomeric form by triorganotin fragments R2L1-2Sn in compounds 5 and 6. The products were characterized by 1H, 13C and 119Sn NMR and IR spectroscopy, ESI/MS, elemental analyses and structures of 3, 6 were determined by X-ray diffraction study. The reactivity of compound 4 containing non-coordinated nitrogen atom of 2-SPy polar group towards CuCl and AgNO3 is also reported. The reactions led to isolation of organotin compounds Ph2L2SnCl (7) and Ph2L2SnNO3 (8) as the result of polar group transfer. The mechanism of this reaction has been investigated and compounds Ph3Sn-2-SPy (9) and Ph2L2Sn-4-SPy (10) (4-SPy = pyridine-4-thiolate) have been prepared for this purpose.  相似文献   

4.
The compounds, 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (MeNˆNˆN) (L1) and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (tBuNˆNˆN) (L2), react with either [Pd(NCMe)2Cl2] or [Pd(COD)ClMe] to form the mononuclear palladium complexes [Pd(MeNˆNˆN)Cl2] (1), [Pd(MeNˆNˆN)ClMe] (2), [Pd(tBuNˆNˆN)Cl2] (3) and [Pd(tBuNˆNˆN)ClMe] (4). Reactions of 1, 2 and 4 with the halide abstractor, NaBAr4 (Ar = 3,5-(CF3)2C6H3), led to the formation of stable tridentate cationic species [Pd(MeNˆNˆN)Cl]+(5), [Pd(MeNˆNˆN)Me]+ (6) and [Pd(tBuNˆNˆN)Cl]+ (7) respectively. The analogous carbonyl linker cationic species [Pd{(3,5-Me2pz-CO)2-py}Cl]+ (9) and [Pd{(3,5-tBu2pz-CO)2-py}Cl]+ (10), prepared by halide abstraction of the neutral complexes [Pd{(3,5-Me2pz-CO)2-py}Cl2] and [Pd{(3,5-tBu2pz-CO)2-py}Cl2] by NaBAr4, were however less stable with t1/2 of 14 and 2 days respectively. Attempts to crystallize 1 and 3 from the mother liquor resulted in the isolation of the salts [Pd(MeNˆNˆN)Cl]2[Pd2Cl6] (11) and [Pd(tBuNˆNˆN)Cl]2[Pd2Cl6] (12). Although when complexes 14 were reacted with modified methylaluminoxane (MMAO) or NaBAr4, no active catalysts for ethylene oligomerization or polymerization were formed, activation with silver triflate (AgOTf) produced active catalysts that oligomerized and polymerized phenylacetylene to a mixture of cis-transoidal and trans-cisoidal polyphenylacetylene.  相似文献   

5.
The reduction of 1-chloro-1,2,3,4,5-pentaphenylsilole, (C4Ph4SiPhCl, 1) with 2 equiv lithium gave the pentaphenylsilole anion [C4Ph4SiPh] (2), silole dianion [C4Ph4Si]2− (3), and hexaphenylsilole C4Ph4SiPh2 (4). 2, 3, and 4 from the reaction mixture were characterized by 29Si NMR spectroscopy. The 29Si chemical shift of 3.7 ppm for 2 is shifted upfield as compared to that of previously reported t -butyltetraphenylsilole anion Li[C4Ph4SitBu], but shifted downfield compared to that of the other silole monoanion such as Li[C4Me4SiSiMe3], indicating the delocalization of silole anion through the 5-membered ring. Derivatization of the reaction mixture with iodomathane gave C4Ph4SiPh2 (4), C4Ph4SiMePh (5), and C4Ph4SiMe2 (6), which were characterized by 1H, 13C, and 29Si NMR spectroscopy. The silole dianion 3 could be either from the continuous reduction of 1 with lithium or from the disproportionation of 2. The reduction of 1 with excess lithium in THF gave the silole dianion [C4Ph4Si]2− in about 70% yield.  相似文献   

6.
The iron dithiolene compounds [Fe2(mnt)4]2− [1]2− and [Fe(NO)(mnt)2]n (n = 1−, [2]1−; n = 2−, [2]2−) ([mnt]2− = maleonitriledithiolate = [(NC)2C2S2]2−) have been characterized structurally by X-ray diffraction as their [Et4N]+ salts at 100 K. Dianion [2]2− is prepared from [2]1− by reduction with Na[Et3BH] and is observed to have a bent Fe-NO angle at 149.9(5)° in contrast to the linear configuration of Fe-NO in [2]1− (180.0°). The change from linear to bent binding mode for NO, an increase of more than 0.1 Å in the Fe-N bond length, and the relative invariance of the Fe-S distances for [2]2− versus [2]1− indicate that the NO ligand is the site of reduction. The [Et3NH]+ complex of [2]1− was also identified by crystallography and found to have hydrogen bonding contacts between [Et3NH]+ and the cyano nitrogen atom of an [mnt]2− ligand. Furthermore, relatively close S?S contacts (3.602-3.615 Å) occur between [2]1− anions, which pack together in an offset, head-to-head fashion. These S?S contacts are absent in the structure of [Et4N][2]. Infrared spectra show an energy decrease for, and a significant broadening of, the NO bond stretching absorption peak in [2]2−, which is consistent with a bent NO ligand sampling a range of conformations both by facile pivoting about the Fe-N axis and by a breathing of the Fe-NO angle.  相似文献   

7.
A facile synthesis of the novel selenium-capped trimolybdenum and tritungsten ring carbonyl clusters [Se2M3(CO)10]2− (M = Mo, 1; W, 4) have been achieved. The selenium-capped trimolybdenum cluster compound [Et4N]2[Se2Mo3(CO)10] ([Et4N]2[1]) can be obtained from the reaction of the trichromium cluster compound [Et4N]2[Se2Cr3(CO)10] with 4 equiv. of Mo(CO)6 in refluxing acetone. On the other hand, when [Et4N]2[Se2Cr3(CO)10] reacted with 4 equiv. of W(CO)6 in refluxing acetone, the planar cluster compound [Et4N]2[Se2W4(CO)18] ([Et4N]2[3]) was isolated, which could further transform to the tritungsten cluster compound [Et4N]2[Se2W3(CO)10] ([Et4N]2[4]) in good yield. Alternatively, clusters 1 and 4 could be formed from the reactions of the monosubstituted products [Et4N]2[Se2Cr2M(CO)10] (M = Mo; W, [Et4N]2[2]) with 3 equiv. of M(CO)6 in acetone, respectively. Complexes 1-4 are fully characterized by IR, 77Se NMR spectroscopy, and single-crystal X-ray analysis. Clusters 1, 2, and 4 are isostructural and each display a trigonal bipyramidal structure with a homometallic M3 ring (M = Mo, 1; W, 4) or a heterometallic Cr2W ring that is further capped above and below by μ3-Se atoms. Further, the intermediate planar complex 3 exhibits a Se2W2 square with each Se atom externally coordinated to one W(CO)5 group. This paper describes a systematic route to a series of selenium-capped trimetallic carbonyl clusters and the formation and the structural features of the resultant clusters are discussed.  相似文献   

8.
Reaction of the neutral tricarbaborane nido-7,8,9-C3B8H12 (1) with triethylamine in CH2Cl2 led to quantitative deprotonation and isolation of the corresponding Et3NH+ salt of the [nido-7,8,9-C3B8H11] anion (2). This was converted into PSH+ and Me4N+ salts via metathetic cation exchange. Heating of the solid Me4N+[7,8,9-C3B8H11] in mineral oil at 350 °C for 2 h resulted in thermal rearrangement and isolation of the cage isomeric compound Me4N+[7,8,10-C3B8H11]. Finally, compound 1 was directly complexed via reaction with [CpFe(CO)2]2 (Cp = η5-C5H5) to generate the ferratricarbollide sandwich [1-Cp-closo-1,2,4,10-FeC3B8H11] (4) in 60% yield. The structures of all the generic compounds of tricarbollide chemistry, 1 (PSH+ salt), 2 (MePPh3+salt), and 4, were established unambiguously by an X-ray diffraction analysis.  相似文献   

9.
Triphenylantimony(III) and triethylantimony(III) readily react with 4,5-(1,1,4,4-tetramethyl-butane-1,4-diyl)-o-benzoquinone to form catecholato complexes R3Sb(4,5-Cat) (R = Ph (1), Et (2); 4,5-Cat is dianionic 4,5-(1,1,4,4-tetramethyl-butane-1,4-diyl)-catecholate). In polar solvents (CHCl3, acetone) complex 1 transforms easily to ionic complex compound [Ph4Sb]+[Ph2Sb(4,5-Cat)2] (3) with diphenyl-bis-[4,5-(1,1,4,4-tetramethyl-butane-1,4-diyl)-catecholato]antimony(V) complex anion. Complexes were characterized by IR, 1H, 13C NMR spectroscopy, cyclic voltammometry. Molecular structure of 3·CHCl3 was confirmed by X-ray analysis. Cyclic voltammometry of 1 and 3 shows that both complexes undergo reversible one-electron oxidation to quite stable paramagnetic o-semiquinonato species [Ph3Sb(4,5-SQ)]+ and [Ph2Sb(4,5-SQ)(4,5-Cat)] (0.75 and 0.49 V in CH2Cl2 vs. Ag/AgCl/KCl, respectively).  相似文献   

10.
Treatment of UI3(THF)4 with [M(Et2O)][SPSMe] (M = Li, K; [SPSMe] = 1-methyl-2,6-bis(diphenylphosphine sulfide)-3,5-diphenylphosphinine anion) gave the cationic tris SPS complex [U(SPSMe)3]I (1). Similar reaction of U(BH4)3(THF)3 and [M(Et2O)][SPSMe] afforded, in addition to the [U(SPS)3]+ cation, crystals of the sulfido complex [U{(μ3-S)4U3(SPSMe)3(BH4)3}2] (2). The metal environment in 1 is a tricapped trigonal prism and the core of the heptanuclear cluster 2 is a corner-shared double-cubane.  相似文献   

11.
The new methyl-tris(pyrazolyl)borate reagents Li[MeTpPh] (1) [MeTpPh] = MeB(3-Ph-pyrazolyl)3) and Tl[MeTpPh] (2) react with TiCl4 to afford (MeTpPh)TiCl3 (3) in 77% and 81% yield respectively. 2 reacts with ZrCl4 and HfCl4 to yield mixtures of products. The reaction of 1 with TiCl3(THF)3 proceeds with B-N bond cleavage to afford TiCl3(3-Ph-pyrazole)(THF)2 as the major product (30%). The reaction of 3 with MeLi (3 equiv) yields 1 (60%) and reduced Ti species, via apparent displacement of [MeTpPh] and generation of unstable TiCl4Me4−x species. Under MAO activation conditions (MAO = methylalumoxane), 3 polymerizes ethylene to linear polyethylene. 3/MAO is significantly more active in ethylene polymerization than the hydrido-tris(pyrazolyl)borate analogue {HB(3-Ph-pyrazolyl)3}TiCl3/MAO.  相似文献   

12.
Syntheses of [Me3SbM(CO)5] [M = Cr (1), W (2)], [Me3BiM(CO)5] [M = Cr (3), W (4)], cis-[(Me3Sb)2Mo(CO)4] (5), [tBu3BiFe(CO)4] (6), crystal structures of 1-6 and DFT studies of 1-4 are reported.  相似文献   

13.
Treatment of [M(Buppy)2Cl]2 (M=Ir (1), Rh (2); BuppyH=2-(4-tert-butylphenyl)pyridine) with Na(Et2NCS2), K[S2P(OMe)2], and K[N(Ph2PS)2]2 afforded monomeric [Ir(Buppy)2(SS)] (SS=Et2NCS2 (3), S2P(OMe)2 (4), N(PPh2S)2 (5)) and [Rh(Buppy)2(SS)] (SS=Et2NCS2 (6), S2P(OMe)2 (7), N(PPh2S)2 (8)), respectively. Reaction of 1 with Na[N(PPh2Se)2] gave [Ir(Buppy)2{N(PPh2Se)2}] (9). The crystal structures of 3, 4, 7, and 8 have been determined. Treatment of 1 or 2 with AgOTf (OTf=triflate) followed by reaction with KSCN gave dinuclear [{M(Buppy)2}2(μ-SCN)2] (M=Ir (10), Rh (11)), in which the SCN ligands bind to the two metal centers in a μ-S,N fashion. Interaction of 1 and 2 with [Et4N]2[WQ4] gave trinuclear heterometallic complexes [{Ir(Buppy)2}2(μ-WQ4)] (Q=S (12), Se (13)) and [{Rh(Buppy)2}2{(μ-WQ)4}] (Q=S (14), Se (15)), respectively. Hydrolysis of 12 led to formation of [{Ir(Buppy)2}2{W(O)(μ-S)23-S)}] (16) that has been characterized by X-ray diffraction.  相似文献   

14.
The mononuclear cations [(η5-C5Me5)RhCl(bpym)]+ (1), [(η5-C5Me5)IrCl(bpym)]+ (2), [(η6-p-PriC6H4Me)RuCl(bpym)]+ (3) and [(η6-C6Me6)RuCl(bpym)]+ (4) as well as the dinuclear dications [{(η5-C5Me5)RhCl}2(bpym)]2+ (5), [{(η5-C5Me5)IrCl}2(bpym)]2+ (6), [{(η6-p-PriC6H4Me)RuCl}2(bpym)]2+ (7) and [{(η6-C6Me6)RuCl}2(bpym)]2+ (8) have been synthesised from 2,2′-bipyrimidine (bpym) and the corresponding chloro complexes [(η5-C5Me5)RhCl2]2, [(η5-C5Me5)IrCl2]2, [(η6-PriC6H4Me)RuCl2]2 and [(η6-C6Me6)RuCl2]2, respectively. The X-ray crystal structure analyses of [3][PF6], [5][PF6]2, [6][CF3SO3]2 and [7][PF6]2 reveal a typical piano-stool geometry around the metal centres; in the dinuclear complexes the chloro ligands attached to the two metal centres are found to be, with respect to each other, cis oriented for 5 and 6 but trans for 7. The electrochemical behaviour of 1-8 has been studied by voltammetric methods. In addition, the catalytic potential of 1-8 for transfer hydrogenation reactions in aqueous solution has been evaluated: All complexes catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide. For both the mononuclear and dinuclear series the best results were obtained (50 °C, pH 4) with rhodium complexes, giving turnover frequencies of 10.5 h−1 for 1 and 19 h−1 for 5.  相似文献   

15.
Preparation and characterization of the ammonium hexafluorosilicate salts, 2[R]+[SiF6]2− (R = 4-(aminosulfonyl)benzenammonium) (1), and 2[R]+[SiF6]2−.4H2O (R = 4-carboxybenzenammonium), (2), are described. These salts, prepared from the reaction of the 4-aminobenzenesulfonamide or the 4-aminobenzoic acid with fluorosilicic acid, were characterized by IR, mass spectrometry and X-ray diffraction. 1 and 2 crystallize in monoclinic crystal system (space group P21/c and P21/n, respectively), with Z = 2 in both cases. Compounds exhibit an extensive system of hydrogen bonding.  相似文献   

16.
The reactions of Pt2Me4(μ-SMe2)2 and [ReS4] in MeCN solution have been investigated. The resulting polyalkylated clusters: Et4N[ReS4PtMe2] (Et4N[1]), Et4N[ReS4(PtMe2)2] (Et4N[2]), and Et4N[ReS4(PtMe2)4] (Et4N[4]), were characterized by 1H, 13C, 195Pt NMR spectroscopy and ESI mass spectrometry. The structure of Et4N[1] was confirmed by single crystal X-ray diffraction, which demonstrated the expected square planar and tetrahedral coordination spheres bridged by a pair of sulfur atoms.  相似文献   

17.
Stibines containing the pendant arm [2-(Me2NCHR)C6H4] (where R = H or Me) were synthesized, and their reactions with CH3I and HBr have been carried out to obtain the diammonium salt {[2-(Me2NCHR)C6H4] [2-(Me3N+CHR)C6H4]}Sb 2[I] (where R = H 3; Me 4) and triammonium salt {2-[(Me2HN+CH2)C6H4]3}Sb 3[Br]5, respectively. A novel platinum complex 6 [PtCl2 · 1] containing stibine 1 as a bidentate ligand has also been prepared. All these compounds show Sb-N interactions. A good conjunction was observed between semi-empirical method and 1H and 13C NMR (at different temperature) data for the diammonium salts of compounds 3 and 4. The structures of all the synthesized compounds were determined by X-ray diffraction analyses. This appears to be the second molecular structure of a Pt stibine complex containing a Pt-Cl bond trans to stibine ligand, as few Pt-Sb X-ray structures are known.  相似文献   

18.
Complexes [Ph3MeP] 2 + [BiI3.5Br1.5(C5H5N)]2? · C5H5N(I), [Ph4Bi] 4 + [Bi4I16]4? · 2Me2C=O (II), and [Ph3(iso-Am)P] 4 + [Bi8I28]4? · 2Me2C=O (III) were synthesized by reactions of bismuth iodide with triphenylmethylphosphonium bromide, triphenylbismuthonium sulfosalicylate, and triphenylisoamylphosphonium iodide, respectively. The crystal structures of complexes I–III were determined by X-ray crystallography. The complexes contain, in addition to cations and solvent molecules, mono-, tetra-, and octanuclear anions, in which bismuth atoms are in octahedral coordination.  相似文献   

19.
The reaction of P4S10 (1) with N,N′-diphenylurea (PhNH)2CO (2) results in new heterocyclic compounds: the pyridinium salt of 1,3-diphenyl-2-sulfido-2-thioxo-1,3-diaza-2λ5-phosphetidine (3) (with a P–N–C–N cycle) and the pyridinium salt of 1,4-diphenyl-2,5-disulfido-2,5-dithioxo-1,4-dithiadiaza-2λ5,5λ5-diphosphinane (4), containing the (P–S–N)2 cycle and the cyclic thiophosphates [pyH]2[P2S8] (5), [pyH]2[P2S7] (6) and [pyH]3[P3S9] (7). A similar reaction, but carried out with N,N′-diphenylthiourea (PhNH)2CS (8), leads to the formation of 4 and 6. pyPS2Cl (9), used as an alternative starting material, also yields compounds 3, 4, 5, and further [pyH][PS2Cl2] (10) and S8 after reaction with 2. Compound 3 reacts with Pd(CH3COO)2, with the formation of the complex [Pd(Ph2N2COPS2)2] (11). The crystal structures of 3 and 7 were determined by single-crystal X-ray diffraction.  相似文献   

20.
Complexes with antimony-containing anions, [Ph3MeP] + 2 [SbI5]2? (I), [Ph3MeP] + 2 [Sb3I12]3? (II), [Ph3MeP] + 3 [Sb3I12]3? · Me2C=O (III), and [Ph3MeP] + 3 [Sb2I9]3? (IV), were synthesized by reacting triphenylmethylphosphonium iodide with antimony iodide. The central atom in the cations of the complexes has a distorted tetrahedral coordination. In the trinuclear anions of complexes II and III, each of the terminal SbI3 groups is bound to the central Sb atom through two μ2- and one μ3 iodine bridges (SbSbSb angles are 103.0° and 102.2°, respectively). In the binuclear anion of complex IV, antimony atoms are linked with each other via three bridging iodine atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号