首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
潜水器开孔耐压壳半球封头极限承载力分析   总被引:1,自引:0,他引:1  
为了使潜水器能够在水下完成各种操作项目,必须为潜水器配置适当的设备以及电缆,这就决定了必须在耐压壳两侧的封头上设置各种大小不同的开孔,开孔处需要安装各类接插件.耐压半球封头上开孔的设置导致了应力的增加和壳体强度的减弱;同时,由于结构的连续性被破坏,这将产生较大的附加弯曲应力.本文利用ANSYS有限元分析软件对开孔半球封头的承载力问题进行了非线性有限元分析,计算了开孔的各项参数变化对耐压封头极限承载力的影响.计算结果表明,随着个数和孔径的增大和围壁厚度的减小其极限承载力呈下降趋势.  相似文献   

2.
From a structural perspective, the pressure hull is a significant structural component of underwater vehicles, to enable them to withstand environmental loadings such as hydrostatical pressure and underwater explosive loading. Hence, improving configuration design tends to be important for underwater vehicles. Applying a nonlinear FEM/DAA coupling procedure, which addresses the effects of transient dynamic, geometrical nonlinear, elastoplastic material behavior and the fluid structure interaction, this investigation examines the transient dynamic responses of a multiple intersecting spheres (MIS) deep-submerged pressure hull subjected to underwater explosion. The time histories of the wet-surface pressure, displacement, velocity, acceleration, von Mises stress and plastic strain are presented. Additionally, the deformed diagram and velocity distribution of MIS pressure hull are elucidated. The analytical results are valuable for designing novel pressure hulls to resist underwater explosion.  相似文献   

3.
耐压壳是深海潜水器中最关键的结构,直接关系到潜水器安全性和总体性能.本文对当今的单层耐压壳结构设计进行了评述,并设计了一种基于分层/分压的新型耐压壳结构,该结构借鉴了自然界的两种深潜动物的结构:抹香鲸分层结构和鹦鹉螺隔片分割螺壳亚结构.综合了这两种结构特性的双层壳结构能够有效提高抗压能力,从而提升深潜能力.与以往单层球壳的耐压壳结构相比,该结构不仅提高了强度,也提高了抗屈曲能力.同时,该结构还兼具大容积、高可靠性、以及避免超厚壳制备上的难点等特征,使得深海潜水器的综合性能得到显著提高.新结构中的桁架将圆壳分割为若干个柱壳亚结构,本文针对此亚结构严格推导了桁架增强壳体抗屈曲的公式.从实验数据中总结出来的泰勒水池公式是目前广泛使用的潜水器壳体设计依据,新推导的公式与之相比只有6%的差别,这使得新型结构设计有了更坚实的理论基础.  相似文献   

4.
水中冲击波与弹性薄板耦合作用的研究   总被引:1,自引:0,他引:1  
对水中冲击波与弹性薄板的流固耦合作用进行了研究,建立了实验装置。利用全息干涉法定量测量了水中动态流场,并测出受水中冲击波作用的弹性薄板在不同时刻的变形,得出相应的全息干涉条纹图。同时利用有限元法对水中冲击波与弹性薄板的流固耦合问题进行了数值计算。研究结果表明,用实验方法能够较好地模拟水中冲击波与弹性结构的耦合作用,用有限元法计算水中冲击波传播问题是可行的。  相似文献   

5.
One-dimensional response of sandwich plates to underwater shock loading   总被引:5,自引:0,他引:5  
The one-dimensional shock response of sandwich plates is investigated for the case of identical face sheets separated by a compressible foam core. The dynamic response of the sandwich plates is analysed for front face impulsive loading, and the effect of strain hardening of the core material is determined. For realistic ratios of core mass to face sheet mass, it is found that the strain hardening capacity of the core has a negligible effect upon the average through-thickness compressive strain developed within the core. Consequently, it suffices to model the core as an ideally plastic-locking solid. The one-dimensional response of sandwich plates subjected to an underwater pressure pulse is investigated by both a lumped parameter model and a finite element (FE) model. Unlike the monolithic plate case, cavitation does not occur at the fluid-structure interface, and the sandwich plates remain loaded by fluid until the end of the core compression phase. The momentum transmitted to the sandwich plate increases with increasing core strength, suggesting that weak sandwich cores may enhance the underwater shock resistance of sandwich plates.  相似文献   

6.
The objective of this study is to simulate the propagation of the shock wave in water due to an explosion. The study is part of a global research program on the development of an alternative stimulation technique to conventional hydraulic fracturing in tight gas reservoirs aimed at inducing a distributed state of microcracking of rocks instead of localized fracture. We consider the possibility of increasing the permeability of rocks with dynamic blasts. The blast is a shock wave generated in water by pulsed arc electrohydraulic discharges. The amplitude of these shock waves is prescribed by the electrohydraulic discharges which generate high pressures of several kilobars within microseconds. A simplified method has been used to simulate the injected electrical energy as augmentation of enthalpy in water locally. The finite element code EUROPLEXUS is used to perform fluid fast dynamic computation. The predicted pressure is consistent with the experimental results. In addition, shock wave propagation characteristics predicted with simulation can be valuable reference for design of underwater structural elements and engineering of underwater explosion.  相似文献   

7.
针对舰载旋转机械的水下非接触爆炸冲击动力学响应问题,提出了一种基础冲击转子-轴承系统建模理论.结合牛顿运动定理、动量矩定理和Timoshenko梁理论,推导出了系统动力学微分方程,方程综合考虑了转子的旋转惯性力、剪切力、陀螺效应、轴向力、轴向扭矩以及轴承的油膜力.通过在时间域和空间域分别采用直接积分法和Galerkin...  相似文献   

8.
马楷东  张瑞荣  郭鑫  许铭扬  浦玉学 《力学学报》2021,53(12):3389-3398
近年来对海洋资源的开发利用成为了社会的研究热点, 推动了国内外学者关于水下航行器各方面的研究工作. 其中航行器的外形设计是研究中较为重要的一部分, 直接影响其在水中行进时所表现流体性能的优劣. 自然界中存在的各种鱼类以其阻力性能好等优点吸引了科研工作者广泛关注. 为设计流体性能较好的航行器壳体外形, 本文将目光放在了双髻鲨身上, 它的头部就像一个水中翼, 帮助其在海洋中灵活的游动. 本文以其为仿生的对象, 首先建立模型分析了3种不同双髻鲨的头部减阻效果, 选定锤头双髻鲨的生物形体特征作为壳体外形特征曲线, 并结合工程实际设计了一种仿生机器鱼外形, 应用Ansys Mosaic 技术建立三维流场结构化网格模型, 对其进行Fluent仿真. 随后与目前主流的翼型壳体外形和回转体航行器外形进行对比, 重点研究其减阻性能. 通过仿真分析得出, 与上述两种常见的水下航行器相比, 仿双髻鲨模型在定常流场中表现出更优秀的流体性能. 本文还探究仿双髻鲨模型周围流场的特性, 对于减少航行器对周围流场干扰方面和改善航行器隐蔽性方面的研究有一定的指导意义, 同时也为水下航行器的设计提供新的方向.   相似文献   

9.
An elastic–plastic finite element analysis is presented for a notched shaft subjected to multiaxial nonproportional synchronous cyclic tension/torsion loading. The elastic–plastic material property is described by the von Mises yield criterion and the kinematic hardening rule of Prager/Ziegler. The finite element program system ABAQUS is used to solve the boundary value problem. Special emphasis is given to explore the effects of the stress amplitude, the mean-stress, and the mutual interactions on the local stress–strain responses at the notch root.  相似文献   

10.
In the point explosion problem it is assumed that an instantaneous release of finite energy causing shock wave propagation in the ambient gas occurs at a space point. The results of the solution of the problem of such blasts are contained in [1–4]. This point model is applied for the determination of shock wave parameters when the initial pressure in a sphere of finite radius exceeds the ambient air pressure by 2–3 orders of magnitude. The possibility of such a flow simulation at a certain distance from the charge is shown in papers [4, 5] as applied to the blast of a charge of condensed explosive and in [6, 8] as applied to the expansion of a finite volume of strongly compressed hot gas. In certain practical problems the initial pressure in a volume of finite dimensions exceeds atmospheric pressure by a factor 10–15 only. Such cases arise, for example, in the detonation of gaseous fuel-air mixtures. The present paper considers the problem of shock wave propagation in air, caused by explosion of gaseous charge of spherical or cylindrical shape. A numerical solution is obtained in a range of values of the specific energy of the charge characteristic for fuel-air detonation mixtures by means of the method of characteristics without secondary shock wave separation. The influence of the initial conditions of the gas charge explosion (specific energy, nature of initiation, and others) is investigated and compared with the point case with respect to the pressure difference across the shock wave and the positive overpressure pulse.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 110–118, May–June, 1986.  相似文献   

11.
We present a shape optimization method using a sampling-based RBDO method linked with a commercial finite element analysis (FEA) code ANSYS, which is applicable to residual deformation problems of the ship hull structure in welding process. The programming language ANSYS Parametric Design Language (APDL) and shell elements are used for the thermo-elasto-plastic analysis. The shape of the ship hull structure is modeled using the bicubic Ferguson patch and coordinate components of vertices, tangential vectors of boundary curves are selected as design variables. The sensitivity of probabilistic constraint is calculated from the probabilistic sensitivity analysis using the score function and Monte Carlo Simulation (MCS) on the surrogate model constructed by using the Dynamic Kriging (DKG) method. The sequential quadratic programming (SQP) algorithm is used for the optimization. In two numerical examples, the suggested optimization method is applied to practical residual deformation problems in welding ship hull structures, which proves the sampling-based RBDO can be successfully utilized for obtaining a reliable optimum design in highly nonlinear multi-physics problem of thermo-elasto-plasticity.  相似文献   

12.
The interfacial stresses in fiber reinforced plastic (FRP)–reinforced concrete (RC) hybrid beams were studied by the finite element method. The mesh sensitivity test shows that the finite element results for interfacial stresses are not sensitive to the finite element mesh. The finite element analysis then is used to calculate the interfacial stress distribution and evaluate the effect of the structural parameters on the interfacial behavior. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam. This research is helpful for the understanding on mechanical behavior of the interface and design of the FRP–RC hybrid structures.  相似文献   

13.
Flow around a real-life underwater vehicle often happens at a high Reynolds number with flow structures at different scales from the boundary layer around a blade to that around the hull. This poses a great challenge for large-eddy simulation of an underwater vehicle aiming at resolving all relevant flow scales. In this work, we propose to model the hull with appendages using the immersed boundary method, and model the propeller using the actuator disk model without resolving the geometry of the blade. The proposed method is then applied to simulate the flow around Defense Advanced Research Projects Agency(DARPA) suboff. An overall acceptable agreement is obtained for the pressure and friction coefficients. Complex flow features are observed in the near wake of suboff. In the far wake, the core region is featured by a jet because of the actuator disk, surrounded by an annular region with velocity deficit due to the body of suboff.  相似文献   

14.
赵铮  李晓杰  陶钢 《爆炸与冲击》2009,29(3):289-294
爆炸压实过程中多孔体的孔隙闭合程度对压实效果起着决定性作用。利用LS-DYNA有限元程序,对无氧铜中的圆形孔隙塌缩过程进行了数值模拟。根据模拟结果分析得出,在6 GPa的冲击压力下,孔隙闭合时不同边界区域会发生爆炸焊接和射流侵彻,这2种结合机理可以使材料结合更牢固,提高材料的致密度和机械强度,实现高质量的爆炸压实。  相似文献   

15.
Overview of cold regions mobility modeling at CRREL   总被引:1,自引:1,他引:1  
Over the last several decades, the Cold Regions Research and Engineering Laboratory (CRREL) has extensively tested and analyzed issues related to vehicle performance in winter. Using this knowledge and the experimental database, models were developed to capture the important elements for cold regions mobility performance. These models span a range of resolutions and fidelities and include three-dimensional finite element models of tire–terrain interaction, vehicle dynamics models of vehicles on winter surfaces, semi-empirical cold regions algorithms for winter performance within the NATO reference mobility model (NRMM), all-season vehicle performance in force-on-force war-gaming simulations, and vehicle–surface interaction for real-time vehicle simulators. Each of these types of models is presented along with examples of their application.  相似文献   

16.
Small scale models representing key vehicle structural elements, including both floorboards and bottom-mounted, downward V-shape hulls in various configurations, have been manufactured and subjected to a range of buried blast loading conditions. By varying surface stand-off distance and depth of burial for several hull and structure configurations, the input-scaled response of aluminum full-scale vehicle floorboards has been quantified using high speed stereo-vision. Specifically, the maximum vertical acceleration on the floorboard and the corresponding Head Injury Criterion (HIC15) are quantified as metrics to assess the severity of the blast event. Results show standard V-shaped hulls provide essential blast mitigation, with reductions in floorboard measurements up to 47X in maximum acceleration and HIC15. Though variations in protective hull geometry provide modest reductions in the severity of a floorboard blast event, results also show that personnel on typical floorboard structures during blast loading events will incur unacceptable shock loading conditions, resulting in either serious or fatal injury. A more appropriate design scenario would be to consider situations that employ frame-mounted passenger seating to reduce the potential for injury. A second set of experiments will be presented in Part II that focuses on frame motions and accelerations when steel frames and steel structures are employed with various frame connections and coatings for frame blast mitigation.  相似文献   

17.
起爆位置和装药形状对水下爆炸冲击波压力有较为显著的影响,这使得利用小当量装药在局部方向形成与大当量装药一定程度等效的冲击波成为可能。为了能够在小当量装药条件下开展舰船结构及设备抗水下爆炸冲击实验,基于细长装药结构和参数优化设计,设计了一种冲击波压力幅值和持续时间可调的装药方法。首先,基于简单波理论给出了水下爆炸冲击波压力调控的原理,以及装药参数优化设计的目标函数和约束条件;然后,采用自主数值模拟软件研究了细长装药的水下爆炸能量输出规律,通过实验验证了数值模拟的置信度,研究发现起爆位置和装药形状对水下爆炸冲击波压力峰值和持续时间的影响是显著的,在炸药爆速一定的情况下,长药柱水下爆炸冲击波压力的持续时间可通过几何近似确定;最后,为了进一步考察该方法的有效性,以1000 kg TNT和100 m爆距的水下爆炸冲击波压力-时间曲线作为原型,设计了2种与该原型冲击波压力等效的装药方案,并通过数值模拟进行了验证。研究结果表明:设计的装药能够在预定的持续时间内,在装药起爆端一侧形成与原型等效的冲击波压力-时间曲线。由于没有考虑对气泡载荷的等效,因此该调控方法仅适用于中远场爆炸冲击问题。  相似文献   

18.
The behavior of cracked linear magnetoelectroelastic solids is analysed by means of the dual Boundary Element Method (BEM) approach. Media possessing fully coupled piezoelectric, piezomagnetic and magnetoelectric effects are considered. An explicit 2-D Green’s function in terms of the extended Stroh formalism for magnetoelectroelastic full-plane under static loading is implemented. Hypersingular integrals arising in the traction boundary integral equations are computed through a regularization technique. Evaluation of fracture parameters directly from computed nodal values is discussed. The stress intensity factors (SIF), the electric displacement intensity factor (EDIF), the magnetic induction intensity factor (MIIF) as well as the mechanical strain energy release rate (MSERR) are evaluated for different crack configurations in both finite and infinite solids subjected to in-plane combined magnetic–electric–mechanical loading conditions. The accuracy of the boundary element solution is confirmed by comparison with selected analytical solutions in the literature. The new results that can be of interest in the design and maintenance of novel magnetoelectroelastic devices are also discussed.  相似文献   

19.
It is shown that the lift–to–drag ratio of a thin delta wing is significantly lower than the lift–to–drag ratio of an infinitely long swept plate with an identical lift force. The effect of sweep on a finite wing may be used by excluding disturbances from the leading edge of the wing via introducing a hardened stream surface (wedge) and increasing the wing length. A three–shock waverider is proposed for choosing the optimal parameters. The sharp wedge may be avoided by replacing planar shock waves by a cylindrical shock wave upstream of the blunted wedge. If the leading edge of the wedge is not parallel to the rib that is a source of the expansion wave, a plate with zero wave drag, generating a lift force, may be obtained behind this rib. The system of regularly intersecting shock waves may be applied to design a forward–swept wing.  相似文献   

20.
An energy inequality that determines the conditions for development of cavitation in scleronomous media in the range from liquid (bitumens, paints, and gels) to solid (lead, aluminum, copper, etc.) plastic media is constructed upon pulse tension in terms of the viscoelastic–plastic model. A relation that allows one to determine the time of negative–pressure relaxation during the growth of cavitating pores in a medium is derived. With allowance for the previously obtained conditions for development of bubble cavitation in a relaxing field of negative pressure in shock wave–loaded liquids, this result allows one to separate a class of condensed media capable to cavitate under pulse loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号