首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have designed an optimum holographic optical element (HOE) lens recorded by visible laser beams for an infrared two-dimensional vertical-cavity surface-emitting laser (VCSEL) array. The hologram computer-aided design tool that we have developed is used for the optimum design. The optimum HOE has both high light efficiency and a small amount of aberration. An Nd:YAG laser operated at 532 nm and an 8 x 8 VCSEL array operated at 850 nm are used for HOE recording and reconstruction, respectively. The designed lens is experimentally demonstrated, and the experimental results of the lens almost agree with the numerical results.  相似文献   

2.
A hologram CAD (computer-aided design) tool capable of designing holographic optical element (HOE) is described. We have been developing this tool which is specialized for holograms. An optimum HOE lens with high diffraction efficiency and diffraction limited imaging characteristics is designed with the tool by applying a computer generated hologram (CGH) which generates an aspherical wave. The imaging characteristics of the HOE lens are experimentally verified and desirable results are obtained.This paper was originally presented at the 2nd International Conference on Optical Design and Fabrication, ODF2000 which was held on November 15-17, 2000 at the International Conference Center, Tokyo, Waseda University, Japan.  相似文献   

3.
Yamada K  Watanabe W  Li Y  Itoh K  Nishii J 《Optics letters》2004,29(16):1846-1848
Multilevel phase-type diffractive lenses were fabricated by translating a filament of a femtosecond laser pulse into three-dimensional space inside synthesized silica. The profile of the lenses was designed by use of a multi-level approximation to a kinoform lens. Two-level diffractive lenses with multiple layers along the optical axis provided a maximum efficiency of 37.6% at a wavelength of 632.8 nm. A four-level diffractive lens provided a maximum efficiency of 56.9%. The lenses fabricated with filamentation were free from birefringence.  相似文献   

4.
To establish optimal processing conditions for direct write fabrication of diffractive optical elements such as gratings, waveguides, lenses, we have investigated the effect of process parameters such as scan speed, numerical aperture (NA) of objective lens, pulse energy on the characteristics of the filament induced inside fused silica with a femtosecond Ti:sapphire laser. The optimum process parameters were used to fabricate a number of Dammann gratings, 6×6 array, having different thicknesses and number of layers. The performance of these optical elements was evaluated by measuring their diffraction efficiencies. All gratings fabricated were strongly birefringent, the zero order spot with high intensity was not separated from the spot array, and the intensity distribution of 6×6 spot array exhibited some degree of nonuniformity. The single layer Dammann grating fabricated with a thickness of 80 μm attained a maximum diffraction efficiency of 38.8%.  相似文献   

5.
We reported on the ablation depth control with a resolution of 40 nm on indium tin oxide (ITO) thin film using a square beam shaped femtosecond (190 fs) laser (λp=1030 nm). A slit is used to make the square, flat top beam shaped from the Gaussian spatial profile of the femtosecond laser. An ablation depth of 40 nm was obtained using the single pulse irradiation at a peak intensity of 2.8 TW/cm2. The morphologies of the ablated area were characterized using an optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS). Ablations with square and rectangular types with various sizes were demonstrated on ITO thin film using slits with varying xy axes. The stereo structure of the ablation with the depth resolution of approximately 40 nm was also fabricated successfully using the irradiation of single pulses with different shaped sizes of femtosecond laser.  相似文献   

6.
The function of a hologram computer-aided design tool which the authors have developed are extended to handle both designing and analyzing holograms illuminated by a two or three-dimensional white-light image. The ability to search for an optimum image plane is also now possible. HOE lenses illuminated by multiple point-sources and by a point-source with a certain spectral bandwidth are designed and analyzed using the extended functions. Accuracy and usefulness of the functions are demonstrated from the results of the design and analysis.  相似文献   

7.
Micro- and nano-scale crystalline indium-tin-oxide (c-ITO) patterns fabricated from amorphous ITO (a-ITO) thin films on a glass substrate using a (low NA 0.26) femtosecond laser pulse that is not tightly focused are demonstrated. Different types of c-ITO patterns are obtained by controlling the laser pulse energies and pulse repetition rate of a femtosecond laser beam at a wavelength of 1064 nm: periodic micro c-ITO dots with diameters of ~1.4 μm, two parallel c-ITO patterns with/without periodic-like glass nanostructures at a laser scanning path and nano-scale c-ITO line patterns with a line width ~900 nm, i.e. ~1/8 of the focused beam׳s diameter (7 μm at 1/e2).  相似文献   

8.
We investigated the femtosecond laser writing of optical waveguides inside Foturan glass at various pulse energies and focusing depths. An optimal waveguide fabricated solely by femtosecond laser irradiation showed a refractive index modulation of ∼1.7×10-3 and a minimum transmission loss of ∼0.80 dB/cm. This type of waveguide had lower transmission loss than those fabricated by a hybrid process of femtosecond laser exposure and following thermal treatment. An optical splitter was also fabricated at high pulse energy. PACS 42.65.Re; 42.82.Et; 42.70.Gi  相似文献   

9.
10.
We present the manufacturing of microlens arrays on soda-lime glass substrates by using two different IR pulsed lasers: a nanosecond Nd:YVO4 laser (1064 nm) and a femtosecond laser based on Ytterbium crystal technology (1030 nm). In both cases, the fabrication technique consists of the combination of a direct-write laser process, followed by a post-thermal treatment assisted by a CO2 laser. Through the analysis of the morphological characteristics of the generated microlenses, the different physical mechanisms involved in the glass ablation process with a nanosecond and a femtosecond laser are studied. In addition, by analyzing the optical features of the microlenses, a better result in terms of the homogeneity and quality of the spot focuses are observed for those microlenses fabricated with the Nd:YVO4 nanosecond laser. Microlens arrays with a diameter of 80 and 90 µm were fabricated.  相似文献   

11.
Femtosecond laser technology, used as a minimally invasive tool in intrastromal refractive surgery, may also have potential as a useful instrument for glaucoma filtration surgery. The purpose of the present study was to evaluate the feasibility of minimally invasive laser sclerostomy by femtosecond laser photodisruption and seek the appropriate patterns of laser ablation and relevant laser parameters. A femtosecond laser (800 nm/50 fs/1 kHz), focused by a 0.1 numerical aperture (NA) objective lens, with different pulse energies and exposure times was applied to ablate hydrated rabbit sclera in vitro. The irradiated samples were examined by scanning electron microscopy (SEM). By moving a three-dimensional, computer-controlled translation stage to which the sample was attached, the femtosecond laser could produce three types of ablation patterns, including linear ablation, cylindrical aperture and rectangular cavity. With pulse energies ranging from 37.5 to 150 μJ, the linear lesions were consistently observed at the inner surface of sclera, whereas it failed to make any photodisruption if pulse energy was below the threshold value of 31.25 μJ, with the corresponding threshold intensity of 4.06×1014 W/cm2. The depths of the linear lesions increased linearly with both pulse energy (37.5–150 μJ) and exposure time (0.1–0.4 s). Histological examination showed the incisions produced by femtosecond laser photodisruption had precise geometry and the edges were sharp and smooth, with no evidence of collateral damage to the surrounding tissue. Our results predict the potential application of femtosecond laser pulses in minimally invasive laser sclerostomy for glaucoma treatment.  相似文献   

12.
By adjusting the laser polarization combinations, fluences and pulse numbers, we fabricated several types of two-dimensional (2D) complex nanostructures on the surface of c-cut ZnO single crystal by the interference of three femtosecond laser beams with central wavelength of 800 nm, pulse duration of 50 fs and pulse repetition frequency of 1 kHz. The hexagonal 2D nanostructures with a period of 600 nm are very regular and uniform, in which nanoparticles, nanorings and nanoripples with sizes of 200 nm are embedded. Excited by 800 nm femtosecond laser pulses, the photoluminescence (PL) micrographs reveal that the 2D nanostructures can emit purer and brighter blue light compared with the plane surface. These nanostructures have potential applications in blue light-emitting diodes (LEDs), high density optical storage and other optoelectronic devices.  相似文献   

13.
Thin films of La0.6Ca0.4CoO3 were grown by pulsed laser ablation with nanosecond and femtosecond pulses. The films deposited with femtosecond pulses (248 nm, 500 fs pulse duration) exhibit a higher surface roughness and deficiency in the cobalt content compared to the films deposited with nanosecond pulses (248 nm, 20 ns pulse duration). The origin of these pronounced differences between the films grown by ns and fs ablation has been studied in detail by time-resolved optical emission spectroscopy and imaging. The plumes generated by nanosecond and femtosecond ablation were analyzed in vacuum and in a background pressure of 60 Pa of oxygen. The ns-induced plume in vacuum exhibits a spherical shape, while for femtosecond ablation the plume is more elongated along the expansion direction, but with similar velocities for ns and fs laser ablation. In the case of ablation in the background gas similar velocities of the plume species are observed for fs and ns laser ablation. The different film compositions are therefore not related to different kinetic energies and different distributions of various species in the plasma plume which has been identified as the origin of the deficiency of species for other materials.  相似文献   

14.
Uniform self-organized grating is fabricated by scanning of a single femtosecond laser on ZF6 glass. The scanning electron microscope and atom force microscope results show that the period and tooth length of the uniform coarse grating are ∼750 nm and ∼20 μm, respectively. The period of the grating is independent of pulse number, neighboring dots intervals, and laser powers, whereas the uniformity of the grating is largely determined by the above three factors.  相似文献   

15.
This paper introduces a novel method to realize the superposition of orbital angular momentum of photons by combined computer-generated hologram (CCGH) fabricated in silica glass with femtosecond laser pulses. Firstly, the two computer-generated holograms (CGH) of optical vortex were obtained and combined as a CCGH according to the design. Then the CCGH was directly written inside glass by femtosecond laser pulses induced microexplosion without any preor post-treatment of the material. The vortex beams with different vortex topological charges (including new topological charges) have been restructured using a collimated He-Ne laser beam incidence to the CCGH normally. A theoretical and experimental explanation has been presented for the generations of the new topological charges.  相似文献   

16.
We report on efficient THz pulse generation via optical rectification with femtosecond laser pulses focused to a line by a cylindrical lens. This configuration provides phase-matched conditions in the superluminal regime. 35 pJ THz pulses have been generated with this technique in a stoichiometric LiNbO3 crystal pumped by 2 μJ femtosecond laser pulses at room temperature. An unusual superquadratic rise of the THz pulse energy with the laser pulse energy has been observed at high laser energies. This extraordinary energy dependence of the THz generation efficiency is explained by self-focusing of the laser beam in the crystal. Z-scan measurements and comparison of the THz pulse spectra created with laser pulses having different energies confirm this interpretation.  相似文献   

17.
Micro-ablation of crystalline silicon was performed by irradiating a silicon substrate with femtosecond laser pulses of wavelengths 786 nm or 393 nm focused using a conical axicon assisted with a convex lens. Focusing the laser beam close to the tip of the axicon by means of the lens significantly improved the efficiency of concentration of laser pulse energy at the central spot of the resulting Bessel-Gaussian intensity distribution. As a result, micron-sized holes were formed with the diameter determined by the ablation threshold in the calculated fluence profile. It is possible to predict hole size from the laser pulse energy and the wavelength. Crystalline particles, a few tens of nanometers in size, were formed near the ablated zone.  相似文献   

18.
钛宝石激光器中用优化Gires-Tournois镜产生15 fs脉冲   总被引:4,自引:0,他引:4  
根据飞秒脉冲锁模钛宝石激光器脉冲压缩的要求,介绍了负色散镜补偿色散的基本原理及其特点。详细阐述了优化Gires-Tournois(OG-T)镜的设计过程,并通过计算机优化得到理想设计膜系。采用离子束溅射的方法镀制了优化Gires—Tournois镜。测量了优化Gires-Tournois镜(编号为OGT#1)的透射率和群延迟色散,并与设计值进行了比较,分析了实测值产生偏差的原因,从而对镀膜参量进行了相应的调整,制造了第二批优化Gires—Tournois镜(编号为OGT#2)。将优化Gires—Tournois镜用于钛宝石激光器振荡级内,单程5次通过三个优化Gires-Tournois镜,补偿了激光器腔内色散,实现了飞秒锁模脉冲运转。用OGT#1先进行了实验,获得32fs的脉冲和46nin的光谱宽度。用调整参量后的OGT#2进行了实验,获得了15fs的超短脉冲和91nm的光谱宽度。实验很好的验证了负色散镜补偿色散的优点,为国内啁啾镜的研制创造了条件。  相似文献   

19.
We introduce a novel method to generate the optical vortex with computer-generated hologram (CGH) fabricated inside glass by femtosecond laser pulses. The CGH was directly written inside glass by femtosecond laser pulses induced microexplosion without any pre- or post-treatment of the material. We also realized the restructured optical vortex beams of both the transmission and reflection pattern with high fidelity using a collimated He-Ne laser beam. The total diffractive efficiency of both the transmission and reflection pattern is about 4.79%.  相似文献   

20.
Jinyu Sun 《Optics Communications》2011,284(19):4745-4748
Noncollinear optical parametric up-conversion generation and amplification are realized in a thick β-barium borate (BBO) crystal, and a couple of visible femtosecond up-conversion laser pulses can be achieved by a femtosecond pulse at 800 nm as the pump sources. The theoretical and experimental results indicate that there exist phase-matching conditions for dual-color noncollinear parametric up-conversion generation and amplification, and their wavelengths can be tuned by rotating the BBO crystal. This parametric up-conversion generation and amplification can be attributed to three and five-wave mixing in a thick BBO crystal, and it shows the potential application on optical parametric chirped pulse amplification (OPCPA) to generate multi-color ultraviolet or visible femtosecond laser pulses pumped directly by femtosecond fundamental laser pulses without frequency-doubling or tripling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号