首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Two new polyhydroxysteroids and five new glycosides were isolated from the starfishCeramaster patagonicus and their structures were elucidated: 5α-cholestane-3β,6α,15β,16β,26-pentol, (22E)-5α-cholest-22-ene-3β,6α,8,15α,24-pentol, (22E)-28-O-[O-(2-O-methyl-β-d-xylopyranosyl)-(1→2)-β-d-galactofuranosyl]-24-hydroxymethyl-5α-cholest-22-ene-3β,4β, 6α,8,15β,16β,28-heptol (ceramasteroside C1), (22E)-28-O-[O-(2,4-di-O-methyl-β-d-xylopyranosyl)-(1→2)-β-d-galactofuranosyl]-24-hydroxymethyl-5α-cholest-22-ene-3β, 6α,8,15β,16β,28-hexol (ceramasteroside C2), (22E)-28-O-[O-methyl-β-d-xylopyranosyl)-(1→2)-β-d-galactofuranosyl]-24-hydroxymethyl-5α-cholest-22-ene-3β,6α,8,15β,16β 28-hexol (eramasteroside C3), (22E)-28-O-[O-(2-O-methyl-β-d-xylopyranosyl)-(1→2)-β-d-galactofuranosyl]-24-methyl-5α-cholest-22-ene-3β,4β,6α,8, 15β, 26-hexol (ceramasteroside C4), and (22E)-28-O-[O-(2-O-methyl-β-d-xylopyranosyl)-(1→2)-β-d-xylopyranosyl]-5α-cholest-22-ene-3β,6α,8,15β,24-pentol (ceramasteroside C5)). Three known polyhydroxysteroids (24-methylene-5α-cholestane-3β,6α,8,15β,16β,26-hexol, 5α-cholestane-3β,6α,8,15β,16β,26-hexol, and 5α-cholestane-3β,6β,15α,16β,26-pentol) were also isolated. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 190–195, January, 1997.  相似文献   

2.
Nine steroidal compounds including three new steroidal glycosides, viz., sodium (24S)-3,24-di-O-(β-D-xylopyranosyl)-5α-cholestane-3β,6β,8,15α,24-pentol 15-sulfate (fuscaside A), (24S)-3,24-di-O-(β-D-xylopyranosyl)-5α-cholestane-3β,6β,8,15α,24-pentol (fuscaside B), and (22E,24R)-24-O-(β-D-xylopyranosyl)-5α-cholest-22-ene-3β,6α,8,15β,24-pentol (desulfated minutoside A); three previously known glycosides, viz., distolasterosides D1 and D2 and pycno-podioside A; two previously known polyhydroxysteroids, viz., 5α-cholestane-3β,6α,8,15β,16β,26-hexaol and 5α-cholestan-3β,4β,6α,7⇇8,15β,16β,26-octol; and the known sodium 24,25-dihydro-marthasterone 3-sulfate were isolated from the Far-Eastern starfish Lethasterias fusca. The structures of these compounds were elucidated by NMR spectroscopy and mass spectrometry. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 196–200, January, 2008.  相似文献   

3.
From the terrestrial part ofThalictrum minus L. (Ranunculaceae) a novel triterpenoid diglycoside was isolated. The genin of this glycoside is a new cycloartane triterpenoid. The structure of the glycoside was established on the basis of 1D and 2D NMR spectroscopy and FAB mass spectrometry as 22S,25-epoxy-3-O-β-d-galactopyranosyl-29-O-β-d-glucopyranosyl-9β, 19-cyclo-20S-lanostane-3β,16β,24S,29-tetrol. For Part 10 see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 602–605, March, 1999.  相似文献   

4.
Five sulfated steriodal compounds including one new glycoside called linckoside L7 (1) and four previously known glycosides 2–5 were isolated from the starfish Linckia laevigata. The structure sodium (22E, 24R)-3-O-(2-O-methyl-β-D-xylopyranosyl)-29-O-(β-D-xylopyranosyl)-24-ethylcholest-4,22-dien-3β,6β,8,15α,16β,29-hexaol 15-O-sulfate was proposed for L7. Linckoside L7 inhibited fertilization and egg-cell development in the sea urchin Strongylocentrotus intermedius. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 64–67, January–February, 2007.  相似文献   

5.
Two triterpenoid diglycosides of the cycloartane series were isolated from the terrestrial part ofThalictrum minus L. (Ranunculaceae). Genins of these glycosides are side-chain structural isomers—3-O-β-d-galactopyranosyl-29-O-β-d-glucopyranosyl-9β, 19-cyclo-20(S)-lanost-24(Z)-ene-3β, 16β, 22(S), 26, 29-pentaol and 3-O-β-d-galactopyranosyl-29-O-β-d-glucopyranosyl-9β, 19-cyclo-20(S)-lanost-25-ene-3β, 16β,22(S), 24ζ, 29-pentaol. The structures of these glycosides were established using 1D and 2D NMR spectroscopy and FAB mass spectrometry. For Part 9, see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1434–1437, July, 1998.  相似文献   

6.
Two new polar steroidal glycosides identified as sodium (20R,22E,24R,25S)-3-O-(β-d-xylopyranosyl)-24-methyl-5α-cholest-22-ene-3β,6β,8,15α,26-pentol 26-sulfate (evasterioside A) and sodium (20R,22E)-24-O-(β-d-xylopyranosyl)-5α-cholest-22-ene-3β,6β,8,15α,24-pentol 3-sulfate (evasterioside B) were isolated from the Pacific starfish Evasterias retifera collected in the Sea of Japan. Five known compounds, viz., coscinasterioside B, aphelasterioside A, marthasterone 3-sulfate and (20R)-cholest-7-en-3β-ol and cholesterol sulfates, were identified. The structures of the new natural compounds were established using their 2D NMR and mass spectra and some chemical transformations.  相似文献   

7.
The structure of a new cycloartane-type triterpene glycoside, cyclomacroside E, which was isolated from roots of Astragalus macropus Bunge (Leguminosae), was established as 3-O-α-L-rhamnopyranoside,24-O[(β-D-xylopyranosyl)(1→2)-β-D-xylopyranoside]-24R-cycloartan-1α,3β,7β,24,25-pentaol.  相似文献   

8.
A new triterpene cycloartane glycoside called askendoside K was isolated from roots of Astragalus taschkendicus Bunge (Leguminosae). The structure of this glycoside was established using chemical and biochemical transformations and spectral data. Askendoside K was a bisdesmoside of cycloorbigenin C and had the structure 23R,24R-cycloartan-3β,6α,16β,23,24,25-hexaol 3-O-[(α-L-arabinopyranosyl)(1 → 2)-β-D-xylopyranoside],23-O-[(β-D-glucuronopyranosyl)(1 → 2)-β-D-glucopyranoside].  相似文献   

9.
A new polyhydroxysteroid was isolated from the starfishLuidiaster dawsoni; the structure of the product was established as (24S,25R)-24-methylcholestane-3β, 5α, 6β, 15α, 16β, 26-hexaol. A mixture of methyl-α- and β-d-glucopyranosides was also isolated from the extract of this starfish. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2088–2090, October, 1998.  相似文献   

10.
The structure of the new cycloartane glycoside cyclomacroside B that was isolated from Astragalus macropus Bunge (Leguminosae) was shown to be 1,7-di-O-acetyl-24R-cycloartan-1α,3β,7β,24,25-pentaol 3-O-α-Lrhamnopyranoside-24-O-β-D-xylopyranoside.  相似文献   

11.
The structure of the new cycloartane glycoside cyclomacroside D, which was isolated from Astragalus macropus Bunge (Leguminosae) and is 24R-cycloartan-1α,3β,7β,24,25-pentaol 3-O-α-L-rhamnopyranoside–24-O-β-D-xylopyranoside, was proved. Presented at the 7th International Symposium on the Chemistry of Natural Compounds (SCNC, Tashkent, Uzbekistan, October 16–18, 2007). Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 48–50, January–February, 2009.  相似文献   

12.
The new cycloartane glycoside cycloascauloside A with the structure 20S,24R-epoxycycloartan-3β, 6α,16β,25-tetraol 3-O-[α-L-rhamnopyranosyl(1→6)]-β-D-(2′-O-acetyl)-glucopyranoside was isolated from leaves of Astragalus caucasicus Pall. The structure was established based on IR, PMR, and 13C NMR spectra and physicochemical properties of the compound itself and the products of its chemical transformations. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 359–361, July–August, 2006.  相似文献   

13.
The new cycloartane glycoside cyclogaleginoside D, which has the structure 25-O-β-D-glucopyranoside-20S, 25R-epoxycycloartan-3β, 6α, 16β, 25-tetraol 3-O-β-D-(2-O-acetyl)xylopyranoside was isolated from Astragalus galagiformis stems. The structure of the glycoside was established using chemical transformations and IR, PMR, and 13C NMR spectral data. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 255–256, May–June, 2006.  相似文献   

14.
A fraction of sulfated polyhydroxylated steroids from the Far-Eastern starfish Ctenodiscus crispatus was investigated. The main component of this fraction was identified as (22E,24R,25R)-24-methyl-5α -cholest-22-en-3β,5,6β,15α,25,26-hexol 26-O-sulfate. For the compound stereoisomeric with respect to the side chain, the (24R,25S) or (24S,25R) relative configurations were assigned to the C(24) and C(25) chiral centers. The structures of two other compounds isolated from the fraction were identified as (22E, 24ξ)-26,27-bisnor-24-methyl-5α-cholest-22-en-3β,5,6β,15α,25-pentol 25-O-sulfate and (22E, 24ξ,25ξ)-24-methyl-5α-cholest-22-en-3β,5,6β,8,15α,25,26-heptol 26-O-sulfate. Dedicated to Academician N. K. Kochetkov on the occasion of his 90th birthday. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1229–1234, May, 2005.  相似文献   

15.
2-(Arylamino)pyrimidin-4-ones were synthesized, silylated, and condensed with l,2,3,5-tetra-O-acetyl-β- d-ribofuranoside to afford the corresponding N 2-aryl protected isocytidines. Deprotection of the acetylated isocytidines using saturated NH3 in MeOH solution gave 1-(β-d-ribofuranosyl)-2-(arylamino)-4-pyrimidinones. Methyl 2-deoxy-3,5-di-O-toluyl-α/β-d-ribofuranoside was prepared and condensed with the previously silylated bases to afford the anomeric mixture of protected nucleosides. The pure β-anomers were synthesized with better yield by treating the sodium salts of N 2-arylisocytosine derivatives with 2-deoxy-3,5-di-O-toluyl-α-d-ribofuranosyl chloride. Deprotection of the latter anomers afforded the corresponding free hydroxyl derivatives. The synthesized free nucleosides are under antiviral and oligonucleotide investigations.  相似文献   

16.
Summary. 2-(Arylamino)pyrimidin-4-ones were synthesized, silylated, and condensed with l,2,3,5-tetra-O-acetyl-β- d-ribofuranoside to afford the corresponding N 2-aryl protected isocytidines. Deprotection of the acetylated isocytidines using saturated NH3 in MeOH solution gave 1-(β-d-ribofuranosyl)-2-(arylamino)-4-pyrimidinones. Methyl 2-deoxy-3,5-di-O-toluyl-α/β-d-ribofuranoside was prepared and condensed with the previously silylated bases to afford the anomeric mixture of protected nucleosides. The pure β-anomers were synthesized with better yield by treating the sodium salts of N 2-arylisocytosine derivatives with 2-deoxy-3,5-di-O-toluyl-α-d-ribofuranosyl chloride. Deprotection of the latter anomers afforded the corresponding free hydroxyl derivatives. The synthesized free nucleosides are under antiviral and oligonucleotide investigations.  相似文献   

17.
A new minor asterosaponin (20S)-6-O-{β-d-fucopyranosyl-(1→2)-[β-d-fucopyranosyl-(1→4)-β-d-quinovopyranosyl-(1→2)]-β-d-quinovopyranosyl-(1→3)-β-d-quinovopyranosyl}-3β,6α,20-trihydroxycholest-9(11)-en-23-one 3-sulfate (archasteroside C) was isolated from the starfish Archaster typicus collected in shallow coastal waters of Vietnam. The structure of archasteroside C was determined by 2D NMR spectroscopy and electrospray ionization (ESI) tandem mass spectrometry.  相似文献   

18.
Uridine 5′-(2-acetamido-2,6-dideoxy-β-l-galactopyranosyl) diphosphate (uridine 5′-diphospho-N-acetyl-β-l-fucosamine) was synthesized. The key intermediate, 3,4-di-O-acetyl-2-azido-2,6-dideoxy-β-l-galactopyranosyl dibenzyl phosphate, was prepared by a previously unknown reaction of cesium dibenzyl phosphate with the corresponding α-glycosyl nitrate and was then converted into theN-acetylated glycosyl phosphate and nucleoside diphosphate sugarsvia 3,4-di-O-acetyl-2-amino-2,6-dideoxy-β-l-galactopyranosyl phosphate using mildN-acetylation andO-deacetylation as the last synthetic steps. Published inIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 11, pp. 1919–1923, November, 2000.  相似文献   

19.
20S-Protopanaxadiol (3β,12β,20S-trihydroxydammar-24-ene) 3-, 12-, and 20-O-β-D-galactopyranosides were synthesized for the first time. Condensation of 12β-acetoxy-3β,20S-dihydroxydammar-24-ene (1) and 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosylbromide (α-acetobromogalactose) (2) under Koenigs–Knorr conditions with subsequent removal of the protecting groups resulted in regio- and stereoselective formation of 20S-protopanaxadiol 3-O-β-D-galactopyranoside, an analog of the natural ginsenoside Rh2. Glycosylation of 12β,20S-dihydroxydammar-24-en-3-one (5) by 2 with subsequent treatment of the reaction products with NaBH4 in isopropanol and deacetylation with NaOMe gave 20S-protopanaxadiol 12- and 20-O-β-Dgalactopyranosides.  相似文献   

20.
A method for preparative production of 3β,20S-dihydroxydammar-24-en-12-one 3,20-di-O-β-D-glucopyranoside (1), a glycoside from Panax japonicus, chikusetsusaponin-LT8 was developed. Chemical transformation of betulafolientriol, a component of Betula leaves extract, produced the 12-keto-20S-protopanaxadiol (3β,20S-dihydroxydammar-24-en-12-one) (2), exhaustive glycosylation of which by 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosylbromide (3) under Koenigs—Knorr reaction conditions with subsequent removal of protecting groups formed 3β,20S-dihydroxydammar-24-en-12-one 3,20-di-O-β-D-glucopyranoside (1). The principal glycosylation product was 3β,20S-dihydroxydammar-24-en-12-one 3-O-β-D-glucopyranoside if equimolar amounts of (2) and (3) were used. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 44–48, January–February, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号