首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Some estimates for simultaneous polynomial approximation of a function and its derivatives are obtained. These estimates are exact in a certain sense. In particular, the following result is derived as a corollary: Forf∈C r[?1,1],mN, and anyn≥max{m+r?1, 2r+1}, an algebraic polynomialP n of degree ≤n exists that satisfies $$\left| {f^{\left( k \right)} \left( x \right) - P_n^{\left( k \right)} \left( {f,x} \right)} \right| \leqslant C\left( {r,m} \right)\Gamma _{nrmk} \left( x \right)^{r - k} \omega ^m \left( {f^{\left( r \right)} ,\Gamma _{nrmk} \left( x \right)} \right),$$ for 0≤k≤r andx ∈ [?1,1], where ωυ(f(k),δ) denotes the usual vth modulus of smoothness off (k), and Moreover, for no 0≤k≤r can (1?x 2)( r?k+1)/(r?k+m)(1/n2)(m?1)/(r?k+m) be replaced by (1-x2)αkn2αk-2, with αk>(r-k+a)/(r-k+m).  相似文献   

2.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

3.
Пусть Λ=(λn) — возрастаю щая к+∞ последователь ность неотрицательных чис ел, λ0=0, а S+(Λ) — класс абсолют но сходящихся в С рядо в Дирихле вида $$F\left( z \right) = \mathop \sum \limits_{k = 0}^\infty a_k \exp \left\{ {z\lambda _k } \right\},$$ где a0=1 и ak>0 (k∈N). Положим $$\begin{gathered} S_n \left( z \right) = \mathop \sum \limits_{k = 1}^\infty a_k \exp \left\{ {z\lambda _k } \right\}, \hfill \\ \sigma _n \left( F \right) = \max \left\{ {\frac{1}{{S_n \left( x \right)}} - \frac{1}{{F\left( x \right)}}:x \in R} \right\}. \hfill \\ \end{gathered} $$ Доказано, что для того, чтобы для любой функц ии F∈S+(Λ) выполнялось равенст во $$\mathop {\lim \sup }\limits_{n \to \infty } \frac{1}{{\ln n}}\ln \frac{1}{{\sigma _n \left( F \right)}} = + \infty ,$$ необходимо и достато чно, чтобы $$\mathop \sum \limits_{n = 1}^\infty \frac{1}{{n\lambda _n }}< + \infty .$$ Аналогичные результ ы получены для различ ных подклассов классаS + (Λ), определяемых условиями на убывани е коэффициентова n.  相似文献   

4.
Пусть?(x) — ограниченн ая функция на отрезке [0,1] и ее функция распределен ияΦ(t) удовлетворяет услов ию $$\Phi \left( t \right) + \Phi \left( { - t} \right) = 1.$$ Еслиf(x) — конечная поч ти всюду функция, то дл яF n (t) — функции распределе ния произведенияf(x)?(nx) — вы полнены соотношения и В частности, еслиf(x) — и нтегрируемая функци я, то из (1) следует, что $$\mathop {\lim }\limits_{n \to \infty } \mathop \smallint \limits_0^1 f\left( x \right)\varphi \left( {nx} \right)dx = 0 $$   相似文献   

5.
We investigate the approximation of functions by Bernstein polynomials. We prove that (1) $$^\tau [0,1]^{(f,B_n (f))} \leqslant \mu _f \left( {4\sqrt {\tfrac{{\ln n}}{n}} } \right) + \left( {4\sqrt {\tfrac{{\ln n}}{n}} } \right),$$ where r[0,1](f, Bn(f)) is the Hausdorff distance between the functionsf(x) and Bn(f; x) in [0,1], is the modulus of nonmonotonicity off(x). The bound (1) is of better order than that obtained by Sendov. We show that the order of (1) cannot be improved.  相似文献   

6.
Let f and g be distributions and let gn = (g * δn)(x), where δn (x) is a certain converging to the Dirac delta function. The non-commutative neutrix product fog of f and g to be the limit of the sequence {fgn }, provided its limit h exists in the sense that sequence is defined N-lim n-∞(f(x)g,, (x), φ(x)〉 = (h(x), φ(x)},for all functions p in 2. It is proved that (x^λ+1n^px+)0(x^μ+1n^qx+)=x+^λμ1n^p+qx+,(x^λ-1n^qx-)=x-^λ+μ1n^p+qx-,for λ+μ〈-1; λ,μ, λ+μ≠-1,-2…and p,q=0,1,2……  相似文献   

7.
We consider the spaces A p ( $\mathbb{T}^m $ ) of functions f on the m-dimensional torus $\mathbb{T}^m $ such that the sequence of Fourier coefficients $\hat f = \{ \hat f(k),k \in \mathbb{Z}^m \} $ belongs to l p (? m ), 1 ≤ p < 2. The norm on A p ( $\mathbb{T}^m $ ) is defined by $\left\| f \right\|_{A_p (\mathbb{T}^m )} = \left\| {\hat f} \right\|_{l^p (\mathbb{Z}^m )} $ . We study the rate of growth of the norms $\left\| {e^{i\lambda \phi } } \right\|_{A_p (\mathbb{T}^m )} $ as |λ| → ∞, λ ∈ ?, for C 1-smooth real functions φ on $\mathbb{T}^m $ (the one-dimensional case was investigated by the author earlier). The lower estimates that we obtain have direct analogs for the spaces A p (? m ).  相似文献   

8.
Let fC[?1, 1]. Let the approximation rate of Lagrange interpolation polynomial of f based on the nodes $ \left\{ {\cos \frac{{2k - 1}} {{2n}}\pi } \right\} \cup \{ - 1,1\} $ be Δ n + 2(f, x). In this paper we study the estimate of Δ n + 2(f,x), that keeps the interpolation property. As a result we prove that $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left| {T_n (x)} \right|\ln (n + 1) + \omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}\left| {T_n (x)} \right|} \right)} \right\}, $$ where T n (x) = cos (n arccos x) is the Chebeyshev polynomial of first kind. Also, if fC r [?1, 1] with r ≧ 1, then $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\frac{{\sqrt {1 - x^2 } }} {{n^r }}\left| {T_n (x)} \right|\omega \left( {f^{(r)} ,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left( {\left( {\sqrt {1 - x^2 } + \frac{1} {n}} \right)^{r - 1} \ln (n + 1) + 1} \right)} \right\}. $$   相似文献   

9.
A theorem of the Hadamard type for entire transcendental functions f, which have a generalized ??-order of growth ?? ?? (f), has been obtained. This theorem connects the values $ \widetilde{M}\left( {f,r} \right)\;\left( {r > 1} \right) $ and the coefficients a n (f) $ \left( {n \in {\mathbb{Z}_{+} }} \right) $ of the expansion of f in Faber series in a finite domain D whose boundary ?? belongs to the Al??per class. This result is the extension of a result obtained by M. N. Sheremeta onto a simply connected domain. The necessary and sufficient conditions for an analytic function $ f \in \mathcal{E}_p^{\prime}(G) $ or $ f \in {\mathcal{E}_p}(G)\;\left( {1 \leqslant p \leqslant \infty } \right) $ to be entire transcendental with a generalized ??-order of growth ?? ?? (f) are obtained. These conditions include the best polynomial approximations of the function f and determine the rate of their convergence to zero, as the degree of polynomials increases.  相似文献   

10.
In this paper,a uniqueness theorem for meromorphic mappings partially sharing 2N+3 hyperplanes is proved.For a meromorphic mapping f and a hyperplane H,set E(H,f) = {z|ν(f,H)(z) 0}.Let f and g be two linearly non-degenerate meromorphic mappings and {Hj}j2=N1+ 3be 2N + 3 hyperplanes in general position such that dim f-1(Hi) ∩ f-1(Hj) n-2 for i = j.Assume that E(Hj,f) E(Hj,g) for each j with 1 j 2N +3 and f = g on j2=N1+ 3f-1(Hj).If liminfr→+∞ 2j=N1+ 3N(1f,Hj)(r) j2=N1+ 3N(1g,Hj)(r) NN+1,then f ≡ g.  相似文献   

11.
Denote by span {f 1,f 2, …} the collection of all finite linear combinations of the functionsf 1,f 2, … over ?. The principal result of the paper is the following. Theorem (Full Müntz Theorem in Lp(A) for p ∈ (0, ∞) and for compact sets A ? [0, 1] with positive lower density at 0). Let A ? [0, 1] be a compact set with positive lower density at 0. Let p ∈ (0, ∞). Suppose (λ j ) j=1 is a sequence of distinct real numbers greater than ?(1/p). Then span {x λ1,x λ2,…} is dense in Lp(A) if and only if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ . Moreover, if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ , then every function from the Lp(A) closure of {x λ1,x λ2,…} can be represented as an analytic function on {z ∈ ? \ (?∞,0] : |z| < rA} restricted to A ∩ (0, rA) where $r_A : = \sup \left\{ {y \in \mathbb{R}:\backslash ( - \infty ,0]:\left| z \right|< r_A } \right\}$ (m(·) denotes the one-dimensional Lebesgue measure). This improves and extends earlier results of Müntz, Szász, Clarkson, Erdös, P. Borwein, Erdélyi, and Operstein. Related issues about the denseness of {x λ1,x λ2,…} are also considered.  相似文献   

12.
The class \(B_{\varrho _1 } \) is introduced and thoroughly studied in the paper. By definition,H \(B_{\varrho _1 } \) if there exist sequences {А n } and {μ n }, ¦μ n ¦ ↑ ∞ (depending onH(?)) such that $$\mathop {\lim \sup }\limits_{t \to \infty } \frac{{\ln \Phi \left( {re^{i\varphi } } \right)}}{{r^{\varrho _1 } }} = H\left( \varphi \right), \Phi \left( z \right) = \mathop \Sigma \limits_{k = 1}^\infty \left| {A_k E_\varrho \left( {\lambda _k z} \right)} \right|,$$ whereE ? (z) is a Mittag—Leffler function and? 1>?>1/2. The significance of the class \(B_{\varrho _1 } \) is confirmed by the following theorem. For each functionH \(B_{\varrho _1 } \) there exists a sequence {λ n } with the following property: every entire functionF(z) of order? 1 with the growth indicatorh F (?)< <H(?) can be expanded into the series $$F\left( z \right) = \mathop \Sigma \limits_{n = 1}^\infty a_n E_\varrho \left( {\lambda _n z} \right),$$ furthermore, $$\mathop {\lim sup}\limits_{r \to \infty } \frac{{\ln \Phi \left( {re^{i\varphi } } \right)}}{{r^{\varrho 1} }}< H\left( \varphi \right), \Phi \left( z \right) = \mathop \Sigma \limits_{n = 1}^\infty \left| {a_n E_\varrho \left( {\lambda _n z} \right)} \right|.$$ The coefficientsa n are explicitly defined. The results were previously announced by the author inDokl. AN SSSR,264 (1982), 1313–1315.  相似文献   

13.
The paper is devoted to the study of the weak norms of the classical operators in the vector-valued setting.
  1. Let S, H denote the singular integral involution operator and the Hilbert transform on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {\mathcal{S}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p,$$ $$\left\| {\mathcal{H}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p.$$ Both inequalities are sharp.
  2. Let P + and P ? stand for the Riesz projection and the co-analytic projection on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {P + f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p ,$$ $$\left\| {P - f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p .$$ Both inequalities are sharp.
  3. We establish the sharp versions of the estimates above in the nonperiodic case.
The results are new even if the operators act on complex-valued functions. The proof rests on the construction of an appropriate plurisubharmonic function and probabilistic techniques.  相似文献   

14.
Пусть {λ n 1 t8 — монотонн ая последовательнос ть натуральных чисел. Дл я каждой функции fεL(0, 2π) с рядом Фурье строятся обобщенные средние Bалле Пуссена $$V_n^{(\lambda )} (f;x) = \frac{{a_0 }}{2} + \mathop \sum \limits_{k = 1}^n (a_k \cos kx + b_k \sin kx) + \mathop \sum \limits_{k = n + 1}^{n + \lambda _n } \left( {1 - \frac{{k - n}}{{\lambda _n + 1}}} \right)\left( {a_k \cos kx + b_k \sin kx} \right).$$ Доказываются следую щие теоремы.
  1. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность {Vn (λ)(?;x)} расходится почти вс юду.
  2. Если λn=o(n), то существуе т функция fεL(0, 2π), для кот орой последовательность $$\left\{ {\frac{1}{\pi }\mathop \smallint \limits_{ - \pi /\lambda _n }^{\pi /\lambda _n } f(x + t)\frac{{\sin (n + \tfrac{1}{2})t}}{{2\sin \tfrac{1}{2}t}}dt} \right\}$$ расходится почти всю ду
.  相似文献   

15.
16.
Let f(z) be a holomorphic Hecke eigencuspform of weight k for the full modular group. Let ?? f (n) be the nth normalized Fourier coefficient of f(z). Suppose that L(sym2 f, s) is the symmetric square L-function associated with f(z), and $ \lambda _{sym^2 f} (n) $ (n) denotes the nth coefficient L(sym2 f, s). In this paper, it is proved that $$ \sum\limits_{n \leqslant x} {\lambda _{sym^2 f}^4 (n)} = xP2(\log x) + O(x^{\frac{{79}} {{81}} + \varepsilon } ), $$ , where P 2(t) is a polynomial in t of degree 2. Similarly, it is obtained that $$ \sum\limits_{n \leqslant x} {\lambda _f^4 (n^2 )} = x\tilde P2(\log x) + O(x^{\frac{{79}} {{81}} + \varepsilon } ), $$ , where $ \tilde P_2 (t) $ is a polynomial in t of degree 2.  相似文献   

17.
It is the aim of this paper to introduce two new notions of discrepancy. They are defined by the formulas $$\begin{gathered} \Delta _N^r \left( {\omega ;f} \right) = \mathop {\sup }\limits_{\left| z \right| = r} \left| {\left( {{1 \mathord{\left/ {\vphantom {1 N}} \right. \kern-\nulldelimiterspace} N}} \right)\sum\limits_{n = 1}^N {f\left( {z e^2 \pi i\omega \left( n \right)} \right)} - f\left( 0 \right)} \right|, and \hfill \\ \delta _N^r \left( {\omega ;f} \right) = \mathop {\sup }\limits_{\left| z \right| = r} \left| {\left( {{1 \mathord{\left/ {\vphantom {1 N}} \right. \kern-\nulldelimiterspace} N}} \right)\sum\limits_{n = 1}^N {f\left( {z \omega \left( n \right)} \right)} \cdot z - \int\limits_0^z {f\left( \zeta \right)d\zeta } } \right|, \hfill \\ \end{gathered} $$ wheref is a holomorphic function defined in the unit disc withf (k) (0)≠0 for allk∈?,r<1 is a positive number, and ω is a sequence in [0, 1]. The first of these discrepancies can be generalized for multidimensional sequences. ω is uniform distributed if and only if lim N→∞ Δ N r (ω;f)=0 resp. lim N→∞δ N r (ω;f)=0. These results are proved in a quantitative way by estimating the classical discrepancyD N (ω) by means ofΔ N r (ω;f) and δ N r (ω;f): $$\begin{gathered} \Delta _N^r \left( {\omega ;f} \right) \ll D_N \left( \omega \right) \ll \Phi \left( {\Delta _N^r \left( {\omega ;f} \right)} \right), \hfill \\ \delta _N^r \left( {\omega ;f} \right) \ll D_N \left( \omega \right) \ll \Psi \left( {\delta _N^r \left( {\omega ;f} \right)} \right). \hfill \\ \end{gathered} $$ The functions Φ and Ψ only depend onf andr. These estimations are based on the inequalities ofKoksma-Hlawka andErdös-Turán.  相似文献   

18.
Let ${\mathbf{T}=\{T(t)\} _{t\in\mathbb{R}}}$ be a ??(X, F)-continuous group of isometries on a Banach space X with generator A, where ??(X, F) is an appropriate local convex topology on X induced by functionals from ${ F\subset X^{\ast}}$ . Let ?? A (x) be the local spectrum of A at ${x\in X}$ and ${r_{A}(x):=\sup\{\vert\lambda\vert :\lambda \in \sigma_{A}(x)\},}$ the local spectral radius of A at x. It is shown that for every ${x\in X}$ and ${\tau\in\mathbb{R},}$ $$\left\Vert T(\tau) x-x\right\Vert \leq \left\vert \tau \right\vert r_{A}(x)\left\Vert x\right\Vert.$$ Moreover if ${0\leq \tau r_{A}(x)\leq \frac{\pi}{2},}$ then it holds that $$\left\Vert T(\tau) x-T(-\tau)x\right\Vert \leq 2\sin \left(\tau r_{A}(x)\right)\left\Vert x\right\Vert.$$ Asymptotic versions of these results for C 0-semigroup of contractions are also obtained. If ${\mathbf{T}=\{T(t)\}_{t\geq 0}}$ is a C 0-semigroup of contractions, then for every ${x\in X}$ and ????? 0, $$\underset{t\rightarrow \infty }{\lim } \left\Vert T( t+\tau) x-T(t) x\right\Vert\leq\tau\sup\left\{ \left\vert \lambda \right\vert :\lambda \in\sigma_{A}(x)\cap i \mathbb{R} \right\} \left\Vert x\right\Vert. $$ Several applications are given.  相似文献   

19.
For the linear positive Korovkin operator \(f\left( x \right) \to {t_n}\left( {f;x} \right) = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( {x + t} \right)E\left( t \right)dt} \), where E(x) is the Egervary–Szász polynomial and the corresponding interpolation mean \({t_{n,N}}\left( {f;x} \right) = \frac{1}{N}\sum\limits_{k = - N}^{N - 1} {{E_n}\left( {x - \frac{{\pi k}}{N}} \right)f\left( {\frac{{\pi k}}{N}} \right)} \), the Jackson-type inequalities \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \left( {1 + \pi } \right){\omega _f}\left( {\frac{1}{n}} \right),\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant 2{\omega _f}\left( {\frac{\pi }{{n + 1}}} \right)\), where ωf (x) denotes the modulus of continuity, are proved for N > n/2. For ωf (x) ≤ Mx, the inequality \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \frac{{\pi M}}{{n + 1}}\). is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.  相似文献   

20.
Letk n be the smallest constant such that for anyn-dimensional normed spaceX and any invertible linear operatorTL(X) we have $|\det (T)| \cdot ||T^{ - 1} || \le k_n |||T|^{n - 1} $ . LetA + be the Banach space of all analytic functionsf(z)=Σ k≥0 a kzk on the unit diskD with absolutely convergent Taylor series, and let ‖fA + k≥0κ|; define ? n on $\overline D ^n $ by $ \begin{array}{l} \varphi _n \left( {\lambda _1 ,...,\lambda _n } \right) \\ = inf\left\{ {\left\| f \right\|_{A + } - \left| {f\left( 0 \right)} \right|; f\left( z \right) = g\left( z \right)\prod\limits_{i = 1}^n {\left( {\lambda _1 - z} \right), } g \in A_ + , g\left( 0 \right) = 1 } \right\} \\ \end{array} $ . We show thatk n=sup {? n1,…, λ n ); (λ1,…, λ n )∈ $\overline D ^n $ }. Moreover, ifS is the left shift operator on the space ?∞:S(x 0,x 1, …,x p, …)=(x 1,…,x p,…) and if Jn(S) denotes the set of allS-invariantn-dimensional subspaces of ?∞ on whichS is invertible, we have $k_n = \sup \{ |\det (S|_E )|||(S|_E )^{ - 1} ||E \in J_n (S)\} $ . J. J. Schäffer (1970) proved thatk n≤√en and conjectured thatk n=2, forn≥2. In factk 3>2 and using the preceding results, we show that, up to a logarithmic factor,k n is of the order of √n whenn→+∞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号