首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
应用新的模式识别方法PCA-BPN(PrincipalComponentAnalysis-BackPropagationNetwork)指认CmⅠ奇宇称未知能级,支持了前人应用传统的KNN(KNearestNeighbors)等模式识别方法及对传神经网络方法(CounterPropagationNetwork,CPN)对大部分谱线的指认,进一步确认了这些组态的归属;鉴别了KNN等与CPN不同的预报结果,纠正CPN的某些错误分类,并以可视非线性映照分类器加以佐证  相似文献   

2.
The optical absorption, fluorescence excitation, and emission spectra of the Cm(III) aqua ion in 0.001 M perchloric acid were studied in pure H(2)O, pure D(2)O, and in mixtures of H(2)O-D(2)O at temperatures from 10 to 85 °C. The quantum yield of the fluorescence of the Cm(III) aqua ion in pure H(2)O and D(2)O was also measured in this temperature range and the radiative decay rate constant was obtained from these data. The results indicate that, from 10 to 85 °C, the effect of temperature on the absorption, excitation, and emission spectra is very small. By correcting the observed decay rate constant for the radiative rate constant, a set of correlations between the observed fluorescence decay rate constant and the hydration number of Cm(3+) in H(2)O at temperatures from 10 to 85 °C was developed. A weak temperature dependence was observed for the nonradiative decay rate constant for the (6)D'(7/2)-(8)S'(7/2) transition and described by the Arrhenius equation. The activation energy of the nonradiative decay was measured to be 0.9 kJ mol(-1), approximately matching the energy gap between the first and the second (A(1) and A(2)) levels of the metastable (6)D'(7/2) multiplet of the Cm(III) aqua ion. On the basis of these observations, it is postulated that the slight increase in the observed fluorescence decay rate constant as the temperature increases from 10 to 85 °C is due to the effect of thermal population of the A(2) level.  相似文献   

3.
The carbonate complexation reactions of Cm(III) were studied by time-resolved laser fluorescence spectroscopy in 0–6 m NaCl at 25°C. The ionic strength dependence of the stepwise formation constants for the carbonato complexes Cm(CO3) n 3–2n with n = 1, 2, 3, and 4 is described by modeling the activity coefficients of the Cm(III) species with Pitzer's ion-interaction approach. Based on the present results and literature data for Cm(III) and Am (III), the mean carbonate complexation constants at I = 0 are calculated to be: log 101 o =8.1 ±0.3, log 102 o =13.0 ± 0.6, log 103 o =15.2 ± 0.4, and log 104 o =13.0 ± 0.5. Combining these equilibrium constants at infinite dilution and the evaluated set of Pitzer parameters, a model is obtained, that reliably predicts the thermodynamics of bivalent actinide An(III) carbonate complexation in dilute to concentrated NaCl solution.  相似文献   

4.
Actinoid tetroxide molecules AnO4 (An = Ac – Cm) are investigated with the ab initio density matrix renormalization group (DMRG) approach. Natural orbital shapes are used to read out the oxidation state (OS) of the f-elements, and the atomic orbital energies and radii are used to explain the trends. The highest OSs reveal a “volcano”-type variation: For An = Ac – Np, the OSs are equal to the number of available valence electrons, that is, AcIII, ThIV, PaV, UVI, and NpVII. Starting with plutonium as the turning point, the highest OSs in the most stable AnO4 isomers then decrease as PuV, AmV, and CmIII, indicating that the 5f-electrons are hard to be fully oxidized off from Pu onward. The variations are related to the actinoid contraction and to the 5f-covalency characteristics. Combined with previous work on OSs, we review their general trends throughout the periodic table, providing fundamental understanding of OS-relevant phenomena.  相似文献   

5.
The stability constants and the associated thermodynamic parameters of formation for the 1:1 binary complexes of Am3+, Cm3+ and Eu3+ with N-(2-hydroxyethyl) ethylenediaminetriacetate (HEDTA) and their 1:1:1 ternary complexes with HEDTA + NTA (nitrilotriacate) were determined by distribution ratio measurements using solvent extraction in aqueous solutions of I=0.10?mol?L?1 (NaClO4) at temperatures of 0?C45?°C. Formation of these complexes is favored by both the enthalpy (exothermic) and the entropy (endothermic) terms. Luminescence lifetime measurements with Cm and Eu were used to study the coordination environment of these complexes over a range of concentrations and pH values. In the binary complexes M(HEDTA), HEDTA is a hexadentate ligand with three waters of hydration, while in the ternary complexes M(HEDTA)(NTA)3? we propose that the HEDTA retaines hexadentate coordination with NTA binding via three sites, depending on the pH of the solution, with the observation that the complex may contain a single water of hydration.  相似文献   

6.
The complexation of Eu(III), Am(III) and Cm(III) with dicarboxylate anions with O, N or S donor groups was measured in I=6.60 mol⋅kg−1 (NaClO4) at temperatures of 0–60 °C by potentiometry and solvent extraction. The complexation thermodynamics of these complexes show that their stability is due to highly favorable complexation entropies because the complexation enthalpies are endothermic. Luminescence studies with Eu(III) and Cm(III) were used to measure the hydration numbers of the complexes. NMR spectra of 1H and 13C were used to determine the binding modes of La(III) with the ligands. The formation of 1:1:1 ternary complexes of M(EDTA) with the dicarboxylate ligands was studied to determine changes in coordination of the metal cation with formation of the ternary species. The complexation of ternary complexes changes from bidentate to monodentate as the chain length between the binding sites of the dicarboxylates increases from 1 (malonate) to 4 (adipate). DFT computations were used to confirm the structural aspects of the interaction of these complexes.  相似文献   

7.
Ionic self-diffusion coefficients (D) for trivalent radiotracers, lanthanide and actinide ions have been determined in concentrated aqueous solutions of supporting electrolytes of Gd(NO3)3–HNO3 or Nd(ClO3)4–HClO4 up to 1.5 mol L?1 at 298.15 K and pH 2.50 by the open-end capillary method. The data obtained in large range of concentrations, allow to derive the limiting value D°, the validity of the Onsager limiting law and a more extended law. This study contributes to demonstrate similarities in transport and structure properties between 4f and 5f trivalent ions explained by a similar electronic configuration, ionic radius and hydration number. An empirical equation is suggested for predicting ionic hydration number with a good precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号