首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Positron annihilation lifetime spectroscopy and differential scanning calorimetry (DSC) measurements were performed for blends of polyacrylamide (PAM) and poly(ethylene glycol) (PEG) and blends of poly(dimethylacrylamide) (PDMAM) and PEG. The samples were prepared by codissolution in a concentration range of 0–100 wt % PEG. The thermal behavior, characterized by DSC measurements, showed similar variations of the glass‐transition temperatures (Tg's) with the PEG concentration for the two systems. Pure PAM and PDMAM presented Tg's of 188 and 111 °C, respectively. A relatively small and nearly linearly decreasing Tg was observed for the two systems in the range of 20–80 wt % PEG. PEG crystals were present in all blend compositions, and no melting point depression was observed. The thermal results pointed to the partial miscibility of the blends. The degree of crystallinity of PEG increased with increasing PEG concentration for the PDMAM/PEG systems. The ortho‐positronium lifetime (τ3) increased with increasing PEG concentration for both blends. However, the parameter of the ortho‐positronium formation probability (I3) decreased with the PEG concentration. The product τI3, which was proportional to the total free volume fraction, was approximately constant with the PEG concentration for PDMAM blends and increased with the PEG concentration for PAM systems. This result may be interpreted as a consequence of a more heterogeneous structure in PAM blends. Scanning electron microscopy micrographs of blends with 40 and 80 wt % PEG provided evidence of the regions associated with PEG crystallites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1493–1500, 2003  相似文献   

2.
Amorphous and crystalline poly(silylenemethylene)s with the repeating PhRSiCH2 (R : Me or Ph) units were characterized by positron annihilation lifetime spectroscopy (PALS) to gain insights into the molecular motions of these polymers. The temperature dependence of the ortho-positronium lifetime (τ3) and intensity (I3) was examined from 50 to 470 K for each sample. The glass transition temperature of each polymer was easily distinguished by a change in the slope of τ3 spectrum. Both polymers exhibited a steep drop of I3 at 130–140 K being probably assignable to the transition arising from the motions of phenyl groups, which was almost undetectable by means of differential scanning calorimetry or dynamic mechanical analysis. Several other transitions of these polymers detected by PALS are also discussed. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 755–761, 1998  相似文献   

3.
The temperature‐sensitive poly(N‐isopropylacrylamide) hydrogels, prepared by γ and electron‐beam (EB) irradiation, were studied using positron annihilation lifetime spectroscopy (PALS). The effect of water content in the hydrogel on the ortho‐positronium (o‐Ps) lifetime and intensity was investigated. The observed positronium lifetime suggests microstructural differences between γ‐ and EB‐synthesized hydrogels. The distribution in positronium lifetime indicates nonhomogeneity in the distribution of free‐volume holes in EB‐synthesized hydrogels. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3462–3466, 2000  相似文献   

4.
Novolac epoxy resins cured with novolac resin, novolac acetate resin, novolac butyrate resin, and novolac phenylacetate resin named as EP, EPA, EPB, and EPP, respectively, were prepared. Their physical aging behavior at a Tg‐30 °C (30 °C below glass‐transition temperature) was examined by positron annihilation lifetime spectroscopy and differential scanning calorimetry. The ortho‐positronium annihilation lifetime τ3 variation extent of EP is less apparent than that of the other three esterified samples during physical aging. The time dependence of ops intensity I3 agreed with the Kohlrausch‐Williams‐Watts (KWW) equation. The relaxation time (τ0) and nonexponential parameter were calculated. The free volume and enthalpy relaxation rate characterized by the reciprocal of τ0 and ?ΔH/?logt, respectively, exhibit the same order—EPP > EPB > EPA > EP. These results suggest that the extend and rate of relaxation are not only related to the frozen free volume produced by quenching but also significantly influenced by segmental mobility of the network that attributed to the side‐group flexibility and their interaction with networks. This work also supports the fact that side‐group flexibility and the free‐volume fraction and distribution act in concert to control the water‐diffusion behavior in epoxy networks. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1135–1142, 2003  相似文献   

5.
The temperature dependence of the mean size of nanoscale free‐volume holes, 〈Vh〉, in polymer blend system consisting of polar and nonpolar polymers has been investigated. The positron lifetime spectra were measured for a series of polymer blends between polyethylene (PE) and nitrile butadiene rubber (NBR) as a function of temperature from 100 to 300 K. The glass transition temperatures (Tg) for blends were determined from the ortho‐positronium (o‐Ps) lifetime τ3 and the mean size of free‐volume holes 〈Vh〉 versus temperature as a function of wt % of NBR. The Tgs estimated from the PALS data agree very well with those estimated from DSC in view of different time scales involved in the two measurements. Both DSC and PALS results for the blends showed two clear Tgs of a two‐phase system. Furthermore, from the variation of thermal expansivity of the nanoscale free‐volume holes, the thermal expansion coefficients of glass and amorphous phases were estimated. Variations of the o‐Ps formation probability I3 versus temperature for pure PE and blends with low wt % of NBR were interpreted on the basis of the spur reaction model of Ps formation with reference to the effects of localized electrons and trapping centers produced by positron irradiation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 227–238, 2009  相似文献   

6.
The multi‐thermo‐responsive block copolymer of poly[2‐(2‐methoxyethoxy)ethyl methacrylate]‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PMEO2MA‐b‐PVEA) displaying phase transition at both the lower critical solution temperature (LCST) and the upper critical solution temperature (UCST) in the alcohol/water mixture is synthesized by reversible addition‐fragmentation chain transfer polymerization. The poly[2‐(2‐methoxyethoxy)ethyl methacrylate] (PMEO2MA) block exhibits the UCST phase transition in alcohol and the LCST phase transition in water, while the poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PVEA) block shows the UCST phase transition in isopropanol and the LCST phase transition in the alcohol/water mixture. Both the polymer molecular weight and the co‐solvent/nonsolvent exert great influence on the LCST or UCST of the block copolymer. By adjusting the solvent character including the water content and the temperature, the block copolymer undergoes multiphase transition at LCST or UCST, and various block copolymer morphologies including inverted micelles, core‐corona micelles, and corona‐collapsed micelles are prepared. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4399–4412  相似文献   

7.
The positron annihilation lifetime (PAL) of a series of copolyimides and copolyamides with microphase‐separated structures was measured to investigate the effects of different hard‐segment polymers on the PAL properties of soft‐segment domains of poly(dimethyl‐siloxane) (PDMS) and poly(ethylene oxide) (PEO). The lifetime (τ3) and intensity (I3) of the long‐lived component are given as a function of the PDMS or PEO content for a series of copolymers, of which the density roughly obeys the additive rule except for the PDMS‐segmented copolyamides. The PDMS‐segmented copolyimides and copolyamides show much smaller I3 values than those estimated from the additive rule. The lifetime distribution of the long‐lived component for the PDMS‐segmented copolyamides is composed of two components. The longer‐lifetime component is attributed to pure PDMS domains, and the shorter‐lifetime component is attributed to the polyamide domains, intermediate phases, and PDMS domains containing small amounts of short amide blocks. Despite the high PDMS content, the latter component is rather large. Thus, the positronium formation in the PDMS domains of the copolyimides and copolyamides is effectively reduced. This can be explained by the combination of the difference in the electron affinity of the PDMS and polyimide or polyamide segments and the incomplete phase separation. The PEO‐segmented copolyimides show much smaller I3 values than those predicted from the additive rule. This is likely attributable to the effects of the intermediate phases. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1123–1132, 2000  相似文献   

8.
A functionalized cyclam was synthesized by the attachment of a polymerizable acryloyl group to one of the four nitrogens on the cyclam molecule. The polymerization of the functionalized cyclam was performed with N‐isopropylacrylamide and N,N′‐methylene bisacrylamide, and the gels obtained were studied in the presence of different transition‐metal‐ion solutions. There was a drastic difference in the phase‐transition temperature (Tc) of the poly(N‐isopropylacrylamide) (PNIPAAm)/cyclam gel in comparison with the pure PNIPAAm gel. For the described system, a Tc shift of 15 °C was obtained. The presence of functionalized cyclam increased the hydrophilicity and Tc of the aforementioned polymer gels in deionized water (at pH 6) because of the presence of protonated amino moieties. The PNIPAAm/cyclam gels showed a dependence of the swelling behavior on pH. Tc of the pure PNIPAAm gel was weakly influenced by the presence of any transition‐metal ions, such as Cu2+, Ni2+, Zn2+, and Mn2+. The addition of Cu2+ or Ni2+ to the PNIPAAm/cyclam gel reduced Tc of the polymer gel, and a shift of approximately 12 °C was observed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1594–1602, 2003  相似文献   

9.
Changes in the free‐volume parameters of polyacrylamide (PAAm) gels during the volume phase transition (VPT) were studied with the positron annihilation lifetime technique. The VPT was induced through the variation of the solvent composition in a mixture of acetone and water. The PAAm gels containing 0 and 4 mol % carboxyl groups in their polymer chains were adapted to compare the effect of the presence of ionic groups on the microscopic environment. The change of the free‐volume property is discussed on a nanoscopic scale, with attention paid to the interactions between the polymer chains and the solvent molecules. It is proven that the variations of the free‐volume parameters correlate significantly with the VPT phenomenon. The results of the free volume for both gels are well‐explained when an interaction parameter, εg, is assumed. The interpretation suggests that the state of the interactions among the components (the polymer chain, acetone, and water molecules) plays an important role in the change of the free volume of PAAm gels during the VPT. An increase of the dispersion of the free‐volume size near the VPT point was observed for the ionized PAAm gel. The broadened size distribution of the free volume of the ionized PAAm gel around the VPT point lay between those of pure water and the corresponding mixed solvent, suggesting that a local minimum of the average free‐volume size at the VPT point is caused by the increase of a specific interaction, hydrogen bonding. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 922–933, 2000  相似文献   

10.
The thermoresponsive poly(ionic liquid) of poly[1‐(4‐vinylbenzyl)‐3‐methylimidozolium tetrafluoroborate] trithiocarbonate (P[VBMI][BF4]‐TTC) showing the soluble‐to‐insoluble phase transition in the methanol/water mixture at the upper critical solution temperature (UCST) was synthesized by solution RAFT polymerization and the synthesized P[VBMI][BF4]‐TTC was employed as macro‐RAFT agent to mediate the RAFT polymerization under dispersion condition to afford the thermoresponsive diblock copolymer nanoparticles of poly[1‐(4‐vinylbenzyl)‐3‐methylimidozolium tetrafluoroborate]‐b‐polystyrene (P[VBMI][BF4]‐b‐PS). The controllable solution RAFT polymerization was achieved as indicated by the linearly increasing polymer molecular weight with the monomer conversion and the narrow molecular weight distribution. The P[VBMI][BF4]‐TTC macro‐RAFT agent mediated dispersion polymerization afforded the P[VBMI][BF4]‐b‐PS nanoparticles, the size of which was uncorrelated with the polymerization degree of the P[VBMI][BF4] block. Several parameters including the polymerization degree, the polymer concentration and the water content in the solvent of the methanol/water mixture were found to be correlated with the UCST of the poly(ionic liquid). The synthesized poly(ionic liquid) is believed to be a new thermos‐responsive polymer and will be useful in material science. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 945–954  相似文献   

11.
The phase behavior of poly(N‐tertbutylacrylamide‐co‐acrylamide) (PNTBAM) in pure water and mixture of water–methanol is studied at different temperatures. The different compositions of PNTBAM are prepared by free‐radical polymerization technique and their phase behavior is studied by turbidimetry. The effects of copolymer and solvent composition on the phase behavior of the copolymers are discussed. It has been suggested that the inhomogenities in polymer chains are responsible for lowering the rate of phase transition by increasing the N‐tertbutylacrylamide (NTBAM) and methanol contents in copolymer and mixture, respectively. For the first time we have revealed that there are second‐order binary interactions in the water–methanol which are dominant in the special range of copolymer composition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 455–462, 2009  相似文献   

12.
The ortho‐positronium (o‐Ps) lifetime τ3 and its intensity I3 in various fluorinated polyimides were determined by the positron annihilation technique and were studied with the spin–lattice relaxation time T1 and the propylene permeability, solubility, diffusivity, and permselectivity for propylene/propane in them. τ3, I3, and the distribution of τ3 changed when the bulky moieties in the polyimides were changed. The polyimides, having both large τ3 and I3 values, exhibited a short T1 and a high permeability with a low permselectivity. The propylene permeability and diffusivity were exponentially correlated with the product of I3 and the average free‐volume hole size estimated from τ3. In highly plasticized states induced by the sorption of propylene, the permeability increased with the propylene pressure in excellent agreement with the change in the free‐volume hole properties probed by o‐Ps. The large and broad distribution of the free‐volume holes and increased local chain mobility for the 2,2‐bis(3,4‐decarboxyphenyl) hexafluoropropane dianhydride‐based polyimides are thought to be important physical properties for promoting penetrant‐induced plasticization. These results suggest that o‐Ps is a powerful probe of not only the free‐volume holes but also the corresponding permeation mechanism and penetrant‐induced plasticization phenomenon. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 308–318, 2003  相似文献   

13.
Polymers including chromophores, which can be switched by light, have been studied extensively during the last years due to a host of potential applications which arise from the marked changes in physical properties on switching. Even though there is clear evidence that the free volume has a significant influence on the isomerization kinetics, the question of free volume changes on switching was only addressed recently. Using a pulsed low‐energy positron beam the ortho‐positronium lifetime τ3 was taken as a very sensitive free volume probe, and no change in free volume was detected on isomerization in an azobenzene‐polymethylmethacrylate (PMMA) copolymer containing about 8 wt % of the azobenzene moiety. Here, we report for the first time on free volume changes in an azobenzene‐PMMA blend with an azobenzene moiety concentration as high as 40 wt %. Using the same pulsed low‐energy positron beam, small but significant changes of τ3 were observed between the structurally relaxed dark and the UV‐illuminated states suggesting a decrease in free volume of the order of 10%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

14.
Positron lifetime measurements were carried out in a series of poly(ethylene oxide)—PEO—of different average molecular weights (M w): 1000, 1500, 6000, 10,000, 300,000, and 4 M. The mean radius (R ) and the mean free volume size (Vf) values were determined using a semiempirical equation that correlates the ortho‐positronium (o‐Ps) lifetime (τ3) and size of holes existing in the amorphous phases. The hole mean radius values determined at room temperature from lifetime spectra were found to be between 2.68 and 2.97 Å, and the hole volumes between 80 and 110 Å3. Free volume size evolution was studied with temperature variation until the melting temperature of the PEO samples. The degree of crystallinity and the melting temperatures were determined by Differential Scanning Calorimetry. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 219–226, 1999  相似文献   

15.
A series of 2‐aminopyridine Ni(II) complexes bearing different substituent groups {(2‐PyCH2NAr)NiBr, Ar = 2,4,6‐trimethylphenyl ( 3a) , 2,6‐dichlorophenyl ( 3b ), 2,6‐dimethylphenyl ( 3c) , 2,6‐diisopropylphenyl ( 3d ), 2,6‐difluorophenyl ( 3e ); (2‐PyCH2NHAr)2NiBr2, Ar = 2,6‐diisopropylphenyl ( 4a )} have been synthesized and investigated as precatalysts for ethylene polymerization in the presence of methylaluminoxane (MAO). High molecular weight branched polymers as well as short‐chain oligomers were simultaneously produced with these complexes. Enhancing the steric bulk of the ortho‐aryl‐substituents of the catalyst resulted in higher ratio of solid polymer to oligomer and higher molecular weight of the polymer. With ortho‐haloid‐substitution, the catalysts afforded a product with low polymer/oligomer ratio ( 3b ) and even only oligomers ( 3e ) in which C14H28 had the maximum content. Compared with complex 3d containing ionic ligand, complex 4a containing neutral ligand exhibited obviously low catalytic activity for ethylene polymerization. The molecular weight, molecular weight distribution, and microstructure of the resulted polymer were characterized by gel permeation chromatography and 13C NMR spectrogram. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1618–1628, 2008  相似文献   

16.
A polystyrene‐block‐oligo(2‐tert‐butylbutadiene)‐block‐polystyrene triblock copolymer was prepared and cyclized by end‐to‐end ring closure. Ring‐shaped polystyrene‐block‐oligo(2‐tert‐butylbutadiene) was isolated from the coupling product via gel permeation chromatography (GPC) fractionation. The ring polymer was ozonized for decomposition of the oligo(2‐tert‐butylbutadiene) sequences selectively referring to the linear molecule. From GPC analysis of the decomposed products by ozonolysis, it was quantitatively confirmed that the fractionated product was 86% ring molecules. Single chain dimensions of the ring and linear molecules in a good solvent, benzene, and in a θ solvent, cyclohexane, were measured with small‐angle neutron scattering. The ratios of the radii of gyration, Rg(ring)/Rg(linear), were 0.780 in benzene and 0.789 in cyclohexane. These were compared with theoretically predicted values. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1582–1589, 2002  相似文献   

17.
Counterion‐ and solvent‐specific swelling behaviors were investigated for alkali‐metal poly(styrene sulfonate) (PSSM) gels having different degrees of sulfonation in aqueous organic solvent mixtures [water plus methanol, ethanol, 2‐propyl alcohol, t‐butyl alcohol, dimethyl sulfoxide (DMSO), acetone, acetonitrile, tetrahydrofuran, or dioxane]. With an increasing organic solvent concentration, most gel systems, except for DMSO, showed a volume phase transition. The transition abruptly occurred without significant deswelling in the lower solvent concentration region. Such swelling behavior contrasted with that of other common charged gel systems, including alkali‐metal polyacrylate (PAAM) gels, which showed gel collapse after gradual deswelling with an increasing organic solvent concentration. The dielectric constant at the critical transition point (Dcr) for most mixed solvent systems decreased in the order of PSSK ≥ PSSCs ≥ PSSNa > PSSLi; that is, larger counterion systems were favorable for the transition. The counterion specificity also contrasted with our previous results for PAAM gels: PAANa > PAAK > PAALi ~ PAACs. On the other hand, the solvent specificity for the PSSM gels was similar to that for the PAAM gels; the higher the dielectric constant was of the organic solvent, the higher the Dcr value was at which the transition occurred. These specificities were examined on the basis of the solvation properties of the counterions and polymer charged groups and the solvent properties such as the Gutmann–Mayer donor number and acceptor number. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1166–1175, 2007  相似文献   

18.
The positron annihilation lifetime measurements have been performed on a number of amorphous styrene–methyl acrylate copolymers and styrene–butyl methacrylate copolymers. The densities of copolymers were obtained with immersion method by using a capillary pycnometer and the average molecular weights were determined by gel chromatography. The lifetime τ3 of ortho‐positronium (o‐Ps) pick‐off annihilation have been found to correlate with side group volume and polarity of macromolecular chains in the copolymers, and relative intensity I3 is attributed mainly to the electron‐attracting groups trapping the spur electrons and positrons. The experimental results have been discussed on the basis of the structural variation of macromolecular chains. In addition, the PALS measurement as a function of time for polystyrene and several styrene–methyl acrylate copolymers has also been performed. The result shows that an electric field is built in polymers during extended positron annihilation spectroscopy measurement, and the field effect is a main factor which causes the decrease in I3 with time. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2476–2485, 1999  相似文献   

19.
Positron lifetime measurements, performed in the temperature range 80–300 K, are reported for polyethylene (PE) and polytetrafluoroethylene (PTFE). The lifetime spectra have been analyzed using the data processing routines LIFSPECFIT and MELT. Two long-lived components appear, which are attributed to pick-off annihilation of ortho-positronium in crystalline regions and at holes in the amorphous phase. The ortho-positronium lifetimes, τ3 and τ4, are used to estimate the crystalline packing density and the size of local free volumes in the crystalline and amorphous phases. The interstitial free volume in the crystals exhibits a weak linear increase with the temperature which is attributed to thermal expansion of the crystal unit cell. In the amorphous phase, the hole volume varies between 0.053 and 0.188 nm3 (PE) and between 0.152 and 0.372 nm3 (PTFE). Its temperature variation may be fitted by two straight lines, the intersection of which is used to estimate a glass transition temperature of Tg = 195 K for both PE and PTFE. The slopes of the free volume in the glassy and crystalline phases with the temperature correlate well with each other. The coefficients of thermal expansion of the hole volume are compared with the macroscopic volume change below and above the glass transition. From this comparison a fractional hole volume at Tg of 4.5 (PE) and 5.7% (PTFE) and a number of 0.73 (PE) and 0.36 (PTFE) × 1027 holes/m3 is estimated. Finally, it is found that the intensity of o-Ps annihilation in crystals shows a different temperature dependence to that in the amorphous phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1513–1528, 1998  相似文献   

20.
Consequences are explored of a hole size distribution in an amorphous polymer for the ortho-positronium (o-Ps) lifetime (τ3) and intensity (I3), determined by positron annihilation lifetime spectroscopy. The disordered lattice model, with a vacancy fraction h as a central quantity, is used to represent the equation-of-state behavior of the polymer. By means of Monte Carlo simulations, we obtain the cluster size distribution as a function of h and hence temperature. The predicted average cluster size and the cluster concentration are compared to τ3 and I3 data, respectively, for bisphenol-a polycarbonate. Furthermore, the influence of an o-Ps lifetime distribution on the experimental mean τ3 is investigated. By mimicking the computational methods used in experimental analysis, agreement between experiment and theory in respect to τ3 and to I3 in the melt ensues. In the glass, however, the experimental I3 becomes increasingly smaller with decreasing temperature than is computed. These deviations may result from a distortion of the equilibrium free volume. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号