首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The combination membrane of poly(1-trimethylsilyl-1-propyne) with enormously high permeability and poly(vinylimidazole)-bound porphinatocobalt with selective oxygenbinding ability was prepared. Oxygen transport through the membrane was facilitated in terms of oxygen transport via the latter domain as a fixed oxygen-carrier, and this oxygen permeability maintained for a month.  相似文献   

2.
We report on a fluorescence microscopy study of the monolayer collapse and shedding behavior due to shell compression during the dissolution of air-filled, lipid-coated microbubbles in degassed media. The monolayer shell was comprised of saturated diacyl phosphatidylcholine (C12:0 to C22:0) and an emulsifier, poly(ethylene glycol)-40 stearate. The morphologies of monolayer collapse structures and shed particles were monitored as a function of phospholipid acyl chain length (n) and temperature. The two components formed a single miscible phase when the phospholipid was near or above its main phase transition temperature, and collapse occurred via suboptical particles to vesicles (both were shed) and tubes as chain length increased. Conversely, two-phase coexistence was observed when the lipid was below its main phase transition temperature. For these bubbles, a transition from primary collapse to secondary collapse was observed. Primary collapse was observed as a loss of expanded phase due to vesiculation. Secondary collapse involved the rapid propagation of monolayer folds and simultaneous deformation. For very rigid monolayers, we observed substantial surface buckling with simultaneous nucleation and growth of folds. The folds merged at a single point or region, providing a conduit for the entire excess lipid to shed in a single event, and the bubble smoothed and became more spherical. These results are discussed in the context of general binary phospholipid collapse behavior, microbubble dissolution behavior, medical applications, and the dissolution behavior of natural microbubbles.  相似文献   

3.
Langmuir trough methods and fluorescence microscopy were combined to investigate the phase behavior and microstructure of monolayer shells coating micron-scale bubbles (microbubbles) typically used in biomedical applications. The monolayer shell consisted of a homologous series of saturated acyl chain phospholipids and an emulsifier containing a single hydrophobic stearate chain and polyethylene glycol (PEG) head group. PEG-emulsifier was fully miscible with expanded phase lipids and phase separated from condensed phase lipids. Phase coexistence was observed in the form of dark condensed phase lipid domains surrounded by a sea of bright, emulsifier-rich expanded phase. A rich assortment of condensed phase area fractions and domain morphologies, including networks and other novel structures, were observed in each batch of microbubbles. Network domains were reproduced in Langmuir monolayers under conditions of heating–cooling followed by compression–expansion, as well as in microbubble shells that underwent surface flow with slight compression. Domain size decreased with increased cooling rate through the phase transition temperature, and domain branching increased with lipid acyl chain length at high cooling rates. Squeeze-out of the emulsifier at a surface pressure near 35 mN/m was indicated by a plateau in Langmuir isotherms and directly visualized with fluorescence microscopy, although collapse of the solid lipid domains occurred at much higher surface pressures. Compression of the monolayer past the PEG-emulsifier squeeze-out surface pressure resulted in a dark shell composed entirely of lipid. Under certain conditions, the PEG-emulsifier was reincorporated upon subsequent expansion. Factors that affect shell formation and evolution, as well as implications for the rational design of microbubbles in medical applications, are discussed.  相似文献   

4.
Self-assembled monolayers (SAMs) have recently garnered much interest due to their unique electrical, chemical, and thermal properties. Several studies have focused on thermal transport across solid-SAM junctions, demonstrating that interface conductance is largely insensitive to changes in SAM length. In the present study, we have investigated the vibrational spectra of alkanedithiol-based SAMs as a function of the number of methylene groups forming the molecular backbone via Hartree-Fock methods. In the case of Au-alkanedithiol junctions, it is found that despite the addition of nine new vibrational modes per added methylene group, only one of these modes falls below the maximum phonon frequency of Au. In addition, the alkanedithiol one-dimensional density of normal modes (modes per unit energy per unit length) is nearly constant regardless of chain length, explaining the observed insensitivity. Furthermore, we developed a diffusive transport model intended to predict interface conductance at solid-SAM junctions. It is shown that this predictive model is in an excellent agreement with prior experimental data available in the literature.  相似文献   

5.
采用界面缩合聚合方法,合成了一系列主链含硅的芳族聚酰胺,从化学结构与气体透过性能关系的角度研究了此类聚合物均质膜的气体透过性能,结果表明,此类聚合物膜对H2、O2、N2、CO2、CH4的气体透过系数大小顺序符合一般玻璃态聚合物规律;在刚性强的高分子链段中引进柔性基因,可提高聚合物的气体透过系数;高分子主链有较强内旋转能力的聚合物,气体透过系数大;高分子主链的化学结构相同,苯环上带有侧甲基的聚合物有高的气体透过系数;硅原子上带有侧苯基的聚合物,其气体扩散系数大于而溶解系数小于硅原子上携有侧甲基的聚合物.结论为,在刚性高分子主链中引入柔性基团和提高刚性链间隙是增大气体透过含硅聚酰胺膜速率的有利因素.  相似文献   

6.
The interaction between dimethylsulfoxide (DMSO) and phospholipid monolayers with different polar headgroups was studied using "in situ" Brewster angle microscopy (BAM) coupled to a Langmuir trough. For a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer, DMSO was shown to significantly impact the structure of the liquid expanded (LE) and gaseous phases. The domains reorganized to much larger domain structures. Domains in the liquid condensed (LC) phase were formed on the DMSO-containing subphase at the mean molecular area where only gaseous and LE phases were previously observed on the pure water subphase. These results clearly demonstrate the condensing and caging effect of DMSO molecules on the DPPC monolayer. Similar effects were found on dipalmitoyl phosphatidyl ethanolamine, glycerol, and serine phospholipids, indicating that the condensing and caging effect is not dependent upon the phospholipid headgroup structure. The DMSO-induced condensing and caging effect is the molecular mechanism that may account for the enhanced permeability of membranes upon exposure to DMSO.  相似文献   

7.
含脂肪链聚苯并咪唑的合成及其气体透过性能   总被引:4,自引:0,他引:4  
对含脂肪链聚苯并咪唑的聚合反应进行了比较系统的研究,在此基础上,合成了一系列含脂肪链聚苯并咪唑.以甲酸为溶剂,在减压下,制备了聚合物的均质膜.对聚合物的气体选择透过性能进行了研究,并从化学结构与气体透过性能关系的角度进行了讨论,发现同一聚合物对不同气体的透过系数符合一般玻璃态聚合物的规津;增加柔性链段中亚甲基数目,可提高聚合物的气体透过系数,降低分离系数;刚性链段中引入柔性基因,可增大气体透过系数;温度升高,聚合物的气体透过系数提高,分离系数一般下降.  相似文献   

8.
Perfluorohexane gas when introduced in the air atmosphere above a film of phospholipid self‐supported on an aqueous solution of C2F5‐labeled compounds causes the recruitment and immobilization of the latter in the interfacial film. When the phospholipid forms a liquid‐condensed Gibbs monolayer, which is the case for dipalmitoylphosphatidylcholine (DPPC), the C2F5‐labeled molecule remains trapped in the monolayer after removal of F‐hexane. Investigations involve bubble profile analysis tensiometry (Gibbs films), Langmuir monolayers and microbubble experiments. The new phenomenon was utilized to incorporate a hypoxia biomarker, a C2F5‐labeled nitrosoimidazole (EF5), in microbubble shells. This finding opens perspectives in the delivery of fluorinated therapeutic molecules and biomarkers.  相似文献   

9.
When transport-efficient membrane modules (such as those where the liquid flows outside hollow fibre membranes) or membranes with prolonged resistance to wetting are used for the oxygenation of blood or other cell suspensions, membrane contribution to the overall oxygen transfer resistance into the liquid may become significant. Thus, estimation of membrane diffusive permeability towards relevant gases (e.g., oxygen) is important to develop new membranes and to ensure reproducible commercial membrane performance.

In this paper, we report on a turbulent flow technique for the estimation of the oxygen diffusive permeability of membranes used in outside-flow oxygenators. Water is re-circulated under turbulent flow conditions in a closed-loop from a reservoir to the shell of lab-scale membrane modules. The overall oxygen transfer to water coefficient is estimated at increasing water flow rates from the time the change of dissolved oxygen tension in the stream leaving the water reservoir occurs. Oxygen diffusive permeability is estimated as the reciprocal overall transfer resistance at infinitely high water flow rates, for negligible gas-side oxygen transport resistance. The technique was used to estimate oxygen diffusive permeability of commercial Oxyphan® polypropylene membranes for blood oxygenation and of two laboratory polypropylene membranes, the one featuring a microporous wall structure with smaller-than-standard pore size, the other featuring an outer thin, dense layer supported by a thick spongy layer. The turbulent flow technique yields oxygen diffusive permeability estimates consistent both with membrane hydraulic permeability towards gaseous nitrogen, membrane wall structure, and with values in literature obtained using a liquid reactive with oxygen, but without the complications associated with reaction and physical transport kinetic characterisation. We conclude that the turbulent flow technique is a useful tool in the development and quality control of membranes for the oxygenation of blood and other cell suspensions.  相似文献   


10.
《Supramolecular Science》1995,2(3-4):219-231
The phase behavior and morphology of segregated structures are considered for mixed Langmuir monolayers, which comprise a type of supramolecular polymer having a complex internal structure mixed with a long chain fatty acid. We fabricated two different series of mixed monolayers from a polyglutamate (PG) copolymer having 30% octadecyl ester side chains and 70% methyl ester side chains and fatty acids. These mixed monolayers deposited on a solid substrate were studied by pressure-area diagram measurements, X-ray analysis, and atomic force microscopy. Stearic acid (STA) and hexacosanoic acid (HCA) with alkyl chain lengths of 17 and 25 carbon atoms, respectively, were used as low molecular weight components. For the mixture PG:STA, where the length of the STA molecules is comparable to the length of the PG side chains, we observed the formation of partially miscible monolayers. These mixtures exhibit a nanometer scale domain morphology formed by the STA molecules dissolved in the outer shell of the PG monolayer. In contrast, for the PG:HCA mixture we observed a strong tendency for microphase separation and the formation of well-defined submicron segregated structures in the monolayers. Lateral compression of the mixed monolayers to a point close to the collapse pressure promotes microphase separation in both types of mixed monolayers with the formation of anisotropic surface morphology and oriented domains.  相似文献   

11.
Langmuir monolayers were used to characterize the influence of the physical state of phospholipid monolayers on the binding of protein Retinis Pigmentosa 2 (RP2). The binding parameters of RP2 (maximum insertion pressure (MIP), synergy and ΔΠ(0)) in monolayers were thus analyzed in the presence of phospholipids bearing increasing fatty acyl chain lengths at temperatures where their liquid-expanded (LE), liquid-condensed (LC), or solid-condensed (SC) states can be individually observed. The data show that a larger value of synergy is observed in the LC/SC states than in the LE state, independent of the fatty acyl chain length of phospholipids. Moreover, both the MIP and the ΔΠ(0) increase with the fatty acyl chain length when phospholipids are in the LC/SC state, whereas those binding parameters remain almost unchanged when phospholipids are in the LE state. This effect of the phospholipid physical state on the binding of RP2 was further demonstrated by measurements performed in the presence of a phospholipid monolayer showing a phase transition from the LE to the LC state at room temperature. The data collected are showing that very similar values of MIP but very different values of synergy and ΔΠ(0) are obtained in the LE (below the phase transition) and LC (above the phase transition) states. In addition, the binding parameters of RP2 in the LE (below the phase transition) as well as in the LC (above the phase transition) states were found to be indistinguishable from those where single LC and LE states are respectively observed. The preference of RP2 for binding phospholipids in the LC state was then confirmed by the observation of a large modification of the shape of the LC domains in the phase transition. Therefore, protein binding parameters can be strongly influenced by the physical state of phospholipid monolayers. Moreover, measurements performed with the α/β domain of RP2 strongly suggest that the β helix of RP2 plays a major role in the preferential binding of this protein to phospholipids in the LC state.  相似文献   

12.
13.
The detailed miscibility analysis of binary phospholipid monolayers requires the application of a variety of spreading and surface techniques which often yield complementary results. Testing the equilibrium state of the binary monolayer by long-time experiments is also of great importance. Studies of the compression and spreading behavior of binary monomolecular systems form a basis for the determination of binary monomolecular phase diagrams. Within these plots different phase regions occur which permit clear statements regarding the miscibility state. Additional knowledge of the miscibility properties (phase diagrams) of the binary bulk systems is required. From the analogy of the properties of the bulk systems, the miscibility state of the monolayers is also determined by the temperature, and we can classify the monolayers of binary lecithin and cephalin systems into systems of complete miscibility, partial miscibility and complete immiscibility. In addition to the differences in the chemical structure of the mixing components, the film states in the monolayer and the miscibility behavior of the bulk systems are also influencing factors. If one of the components does not produce a spreading pressure, miscibility gaps occur in the phase diagram of the phospholipid monolayer. The miscibility gap, expressed by a constant spreading pressure, indicates complete immiscibility within this concentration range. If both components produce spreading pressures, and condensed and liquid-expanded film states within the considered temperature range, partial miscibility of the components becomes probable. The most effective parameter is then the difference in the chemical structure of the components. When both components produce spreading pressures and condensed films, the chemical structure of the mixing phospholipid compounds within their hydrophilic and hydrophobic parts is of essential importance. Depending on the differences in the chemical structures of their chains and their head groups in the case of binary phospholipid monolayers, the following possibilities result: complete miscibility, partial miscibility and complete immiscibility of the lecithins and the cephalins. Complete miscibility within the binary phospholipid monolayer takes place in the case of identical head-group structure and where there are only small differences in the chain length of the fatty acid groups. With increasing hydrocarbon chain length differences, partial miscibility or even complete immiscibility can occur within the monolayer. Chemical differences in the head-group structure of the mixing components have a similar influence. In the case of binary lecithin/cephalin mixtures, the differences in the head-group structure affect the miscibility behavior more than the chain length differences do in the case of lecithin/lecithin and cephalin/cephalin mixtures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Monolayers presenting methyl-terminated (hydrophobic) and hydroxyl-terminated (hydrophilic) surfaces on silica have been studied by molecular dynamics simulation and the effects of hydrogen bonding, chain length, and chain mixing on the frictional properties determined. The hydroxyl-terminated monolayers were found to show large adhesion zones as a result of strong interfacial interlayer hydrogen bonds; the interfacial sliding forces observed in the hydroxyl-terminated monolayers being one order of magnitude higher than the interfacial forces for the hydrophobic surfaces at the characteristic point of zero-load. Mixed hydroxyl- and methyl-terminated monolayers of equal length were found to exhibit intermediate shear stress values between those observed for pure monolayers, with the magnitude of the shear stress depending on the surface content of the hydroxyl-terminated chains. For mixed monolayers of unequal chain lengths, at high loads a maximum in the magnitude of the shear stress as a function of the length of the methyl-terminated chain was observed due to the creation of a buffer zone between the hydroxyl-terminated chains that produces strong hydrogen-bonding interactions. The effect of a constant normal load or constant separation simulation ensemble on the results has also been studied and in general found to have minimal influence on the observed behavior, although some differences are observed for the shear stress at intermediate normal loads due to the formation of stronger hydrogen bond networks at constant load compared to constant separation.  相似文献   

15.
Two PEG-based copolymers containing two different chain extenders, as hard segments, were synthesized by 4,4′-methylenediphenyl diisocyanate (MDI). The chain extenders were 1,4-butane diol (BDO) and 1,2-ethane diamine (EDA). The application of the polyurethane (PU) and poly(urethane-urea)s (PUU)s synthesized polymers, which were characterized by Fourier transform infrared spectrometer (FTIR), differential scanning calorimetry (DSC) and atomic Force Microscopy (AFM), in the gas permeability was investigated. The obtained results indicated that by replacing the urea linkage in the polymers, the microphase separation of hard and soft segments increased. The synthesized PEG-based copolymers were semi-crystalline at room temperature. According to the DSC results, the crystallinity of the synthesized polyurethanes decreased as temperature increased. In addition, a reduction in mean surface roughness could be seen based AMF information. The gas (carbon dioxide and methane) separation properties of the polymers revealed that by replacing the urea linkage, the diffusivity, permeability and selectivity of the gases increased slightly.

The solubility and diffusivity of gases indicated he solubility domination of gas transport in these membranes. However, the sorption coefficient (S) of a particular gas was surprisingly constant for the two synthesized polymers. The CO2 permeability increased with increasing feed pressure, while CH4 permeability remained almost constant at both temperatures of 25°C and 35°C. The increase in temperature led to an increase in the permeability of the gases and a decrease in the gas selectivity for the both synthesized polyurethanes.  相似文献   

16.
Fully-substituted cellulose esters with acyl substituents ranging in size from C2 to C18 were synthesized using the acyl chloride method. Films were prepared from the purified esters by either solvent-casting or compression-molding at elevated temperatures. Oxygen and water vapor permeability was determined under different conditions of pressure and moisture. The relationship between cellulose ester structure and barrier properties was examined. The results revealed linear relationships between water vapor and oxygen permeabilities and molar ester substituent volume as well as several structural factors relating to polymer polarity and hydrophobicity, such as aliphatic (methylene) content, solubility parameter, and contact angle. Films from long chain cellulose esters (LCCE) with acyl substituents in the size range between C8 and C18 were found to represent effective barriers to water vapor transport while their obstruction to the transfer of oxygen remained low. It was concluded that the hydrophobic nature of LCCEs is responsible for the control of water vapor transport, and that spatial factors dominate the transfer of oxygen.  相似文献   

17.
This article reports a study of four poly(ether imide)s with varying ethylene oxide (EO) segments lengths using positron annihilation lifetimes spectroscopy, wide angle X‐ray diffraction, and gas transport measurements. The measured properties change with the length of the EO segment. Comparison of the poly(ether imide) containing a single ether linkage with those containing one and three EO units, show progressive changes of the permeability and diffusion coefficient with void size. However, when six EO units are incorporated into the polymer backbone certain of the observed trends are reversed. Incorporation of flexible EO segments in the polymer backbone allows changes in the chain–chain interactions which increases the packing density and changes the void size and influences the solubility coefficients leading to variation of the gas transport characteristics. Differences in the measured solubility parameters reflect the extent to which the gases molecules are able to interact with the polymer matrix. The highest values obtained for the gas separation for carbon dioxide and nitrogen is observed when EO has a value of three. Further increasing of the length of the EO segments in the poly(ether imide) leads to a reduction the gas transport properties and hence the extent to which gas separation would be achieved. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1654–1662  相似文献   

18.
Structured latex particles prepared by emulsion polymerization were used as a model to simulate the interphase region between two phases. Multiphase polymer films comprised of high and low permeability polymers of various compositions were used. The model system consisted of a poly(n-butyl methacrylate) (PBMA) matrix and a discontinuous phase with core and shell morphology. The structured particle had a PBMA core and a vinylidene chloride – n-butyl methacrylate (VDC–BMA) copolymer shell. The shell transport characteristics wer altered by changing the (VDC–BMA) copolymer molar ratio. The physical and transport properties for each individual component were measured. Nitrogen was the probe gas. Films used for permeation experiments were prepared by latex casting. The results showed that the morphology of a heterogeneous polymeric system and the transport characteristics of their components had a considerable effect on the magnitude of the transport properties. Experimental data also showed the dependence of the gas global permeability coefficient on the nature of the simulated interphase region, the shell, and the weight percentage of such interphase in the heterogeneous polymeric films. Upon increasing the VDC content in the VDC–BMA copolymer, the gas permeability decreased. The data were fitted to the electrical analogs of conductivity in composite systems. For the matrix filled with structured particles the overall permeability coefficient could best be described when the individual permeabilities were considered as the inverse resistances in parallel.  相似文献   

19.
The grafting of dimethyl amino ethyl methacrylate (DMAEMA) onto styrene–butadiene–styrene triblock copolymer membrane (SBS) was induced by UV-radiation without degassing to obtain SBS-g-DMAEMA copolymer membrane. The graft copolymer membrane was characterized by electron spectroscopy for chemical analysis (ESCA). The density and the decomposition temperature of the SBS-g-DMAEMA copolymer membrane were measured. The effects of DMAEMA grafting content and operating temperature on membrane gas permeability were investigated. It was found that the density of SBS-g-DMAEMA copolymer membrane increased with increasing DMAEMA content, whereas the decomposition temperature decreased. The changes of properties of SBS-g-DMAEMA copolymer membrane reduced the gas permeability and diffusivity of oxygen and nitrogen through the membrane, but increased the gas solubility of oxygen through the membrane and the gas selectivity between oxygen and nitrogen. When the operating temperature of gas permeation was increased, the permeability, solubility and diffusivity of oxygen and nitrogen increased but the selectivity decreased.  相似文献   

20.
We studied the effect of solubilisation of methyl esters with different chains of medium length into the binary surfactant system tetradecyldimethylamine oxide/water at constant surfactant concentration of 200 mM. As esters we employed valeric, capronic, enanthic, and pelargonic methyl ester, thereby decreasing the polarity. Always a phase sequence L(1)-L(α)-L(1) is observed with increasing ester concentration, where the L(α)-phase increases in extent and goes to much lower temperatures with increasing chain length of the ester. Viscosity measurements show a maximum at intermediate concentrations of additive that is independent of the type of ester. From SANS measurements detailed information about the structural changes occurring during the rod-to-sphere transition in the system of the shortest additive is deduced, which proceeds first through a pronounced rod growth. Interestingly, for the different esters an almost constant value of the volumic solubilisation capacity is observed, in agreement with the relatively constant interfacial tension. For the different esters no effect on the radius and the area requirement at the amphiphilic interface is observed at the solubilisation boundary. The microemulsions present here are spherical aggregates where the ester is partitioned between core and shell. From the SANS and interfacial tension data the effective bending constants of the surfactant monolayers were deduced and they show that the extension of the L(α)-phase is directly related to a corresponding increase in the bending constants of the surfactant/ester monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号