首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The dual gradient column, in which both the chemical property of the stationary phase and the flow velocity in the mobile phase are heterogeneous longitudinally along the column, is developed to obtain the mobile phase gradient-like elution in an isocratic condition. Here, the step-wise dual gradient columns were prepared by connecting an inlet column (I.D. 50 microm, packed with ODS) serially to an outlet column (I.D. 100-200 microm, packed with the mixture of ODS and C1 [9:1]). The retention behavior of alkylbenzenes was able to be controlled in the dual gradient column depending on the variation in the flow velocity. Moreover, the change in retention behavior induced by the flow velocity variation for the dual gradient columns was quite different from that by the variation in organic modifier content of the mobile phase in isocratic elution for a single gradient column and can induce the similar effect with an ordinary gradient elution in a mobile phase composition.  相似文献   

2.
Reversed-phase ultra-performance liquid chromatography was used for biopolymer separations in isocratic and gradient mode. The gradient elution mode was employed to estimate the optimal mobile phase flow rate to obtain the best column efficiency and the peak capacity for three classes of analytes: peptides, oligonucleotides and proteins. The results indicate that the flow rate of the Van Deemter optimum for 2.1 mm I.D. columns packed with a porous 1.7 microm C18 sorbent is below 0.2 mL/min for our analytes. However, the maximum peak capacity is achieved at flow rates between 0.15 and 1.0 mL/min, depending on the molecular weight of the analyte. The isocratic separation mode was utilized to measure the dependence of the retention factor on the mobile phase composition. Constants derived from isocratic experiments were utilized in a mathematical model based on gradient theory. Column peak capacity was predicted as a function of flow rate, gradient slope and column length. Predicted peak capacity trends were compared to experimental results.  相似文献   

3.
Micro‐high‐performance liquid chromatography is a miniaturized, economic and ecological chromatographic system allowing the use of reduced size chromatographic columns. Coupled with electrospray ionization tandem mass spectrometry, this technique can be used to detect and quantify low concentrations of peptides. In this study, hepcidin was used as the model compound and analysed using octadecylsilica stationary phase by means of a gradient elution mode at a flow rate of 4 μL/min. Several parameters were studied to optimize peak focusing. Using the methodology of experimental design, the mobile‐phase gradient conditions and the sample composition were optimized in order to maximize the sensitivity and minimize retention time. Stability of the target peptide in solution was also demonstrated.  相似文献   

4.
Minor-adjustment of the retention of peptides, induced by varying the mobile phase flow-rate(MPF-R), is a new dynamic separation method for simultaneously and rapidly identifying and improving the selectivity of hidden and overlapping peptide peaks. It can also-stabilize the reverse elution order of some pair-peaks under gradient elution in reverse phase liquid chromatography. The retention characteristics of peptides under gradient elution in RPLC was firstly found to be dominated by two variables of the steady region(SR) and migration region(MR). The changes in peptide retention induced by varying the MPF-R can be attributed to changes in the rate of bond breaking of multiple molecular interactions of peptides from the SR and of the mass transfer of peptides from the stationary phase to the mobile phase in the MR. The two dynamic variables were also found to independently depend on the type of peptide. Desirable results were obtained using six standard oligopeptides and a real sample of trypsin-digested lysozyme.It is expected that the quality control of peptide drugs, high dispersion of peptide peaks in peptide mapping and "bottom-up MS"in proteomics will be improved by this method, even enabling peptide purification on a preparative scale in industry.  相似文献   

5.
Gradient programs were applied to the determination of peptides and proteins in HPLC with contactless conductivity detection. A monolithic capillary column was used for the fast and sensitive determination of the biochemical species in acidic mobile phases consisting of acetic acid or trifluoroacetic acid in various concentrations of acetonitrile in water. The drift in baseline, which is caused by conductivity changes during the elution program, was minimized by careful optimization of the composition of the mobile phase and remaining drift was removed by computational baseline normalization. The flow rate from a conventional HPLC pump was reduced to a flow rate suitable for capillary systems using a pre-column flow splitter and a final total flow rate of 1.65 microl/min was used for all capillary HPLC separations. The contactless conductivity detector was positioned directly on the outlet capillary of the separation column and positively charged peptides and proteins were determined as sharp and symmetrical peaks. Detection limits in a concentration range from 3.7 x 10(-8) to 5.1 x 10(-7)M and a reproducibility of peak areas and peak heights between 2.3% and 7.3% were achieved for all biochemical species tested.  相似文献   

6.
Separation of Peptides by Pressurized Capillary Electrochromatography   总被引:2,自引:0,他引:2  
A novel gradient pressurized capillary electrochromatography (pCEC) instrument was developed to separate peptides.Two gradient elution modes,hydrophobic and hydrophilic interaction mode in pCEC,were performed on this instrument.Baseline separation of six peptides was obtained on two gradient modes with C18 column and strong cationic exchange column respectively.The effects of mixer volume and total frow rate of pumps on resolution were also discussed.  相似文献   

7.
The performance of 5 and 15 cm long columns packed with shell particles (Halo, AMT) is compared in gradient elution separations of the tryptic digests of myoglobin and bovine serum albumin. The influences of the temperature and the mobile phase flow rate on the column efficiency for two peptides are discussed. The influences of this flow rate, of the temperature, and of the gradient slopes on the peak capacities are also considered. Peak capacities in excess of 400 were achieved in 6h with the longer column. Peak capacities of 200 could be achieved in 30 min with the shorter column.  相似文献   

8.
We characterized thermally polymerized organo-silica hybrid monolithic capillaries to test their applicability in the gradient elution of peptides. We have used a single-pot approach utilizing 3-(methacryloyloxy)propyltrimethoxysilane (MPTMS), ethylene dimethacrylate (EDMA), and n-octadecyl methacrylate (ODM) as functional monomers. The organo-silica monolith containing MPTMS and EDMA was compared with the stationary phase prepared by adding ODM to the original polymerization mixture. Column prepared using a three-monomer system provided a lower accessible volume of flow-through pores, a higher proportion of mesopores, and higher efficiency. We utilized isocratic and gradient elution data to predict peak widths in gradient elution. Both protocols provided comparable results and can be used for peptide peak width prediction. However, applying gradient elution data for peak width prediction seems simpler. Finally, we tested the effect of gradient time on achievable peak capacity in the gradient elution of peptides with a column prepared with a three-monomer system providing a higher peak capacity. However, the performance of hybrid organo-silica monolithic stationary phases in gradient elution of peptides must be improved compared to other monolithic stationary phases. The limiting factor is column efficiency in highly aqueous mobile phases, which needs to be focused on.  相似文献   

9.
In this work, monolithic silica columns with the C4, C8, and C18 chemistry and having various macropore diameters and two different mesopore diameters are studied to access the differences in the column efficiency under isocratic elution conditions and the resolution of selected peptide pairs under reversed-phase gradient elution conditions for the separation of peptides and proteins. The columns with the pore structural characteristics that provided the most efficient separations are then employed to optimize the conditions of a gradient separation of a model mixture of peptides and proteins based on surface chemistry, gradient time, volumetric flow rate, and acetonitrile concentration. Both the mesopore and macropore diameters of the monolithic column are decisive for the column efficiency. As the diameter of the through-pores decreases, the column efficiency increases. The large set of mesopores studied with a nominal diameter of approximately 25 nm provided the most efficient column performance. The efficiency of the monolithic silica columns increase with decreasing n-alkyl chain length in the sequence of C18相似文献   

10.
The retention behavior of 100 peptides was studied during high-performance liquid chromatography on a C18 column using aqueous trifluoroacetic acid as the mobile phase and acetonitrile as the mobile phase modifier in a linear gradient elution system. Retention times of the peptides were linearly related to the logarithm of the sum of Rekker's constants (R.F. Rekker, The Hydrophobic Fragmental Constant, Elsevier, Amsterdam, 1977, p. 301) for the constituent amino acid. Assuming this relationship, the best fit constants for this system were computed by non-linear multiple regression analysis. Using the new constants, it is possible to predict retention times for a wide variety of peptides at any slope of linear gradient, if the amino acid composition is known. It also enables accurate prediction of the retention time of peptides, whose amino acid composition in not known, after an analytical run with an alternate gradient.  相似文献   

11.
This paper explores the changes in the electrospray signal response of 39 structurally different compounds caused by the quality of the methanol, when used as a component in a gradient elution mobile phase. When three batches of LC–MS grade methanol from one manufacturer were evaluated, the largest variation in the electrospray signal responses of the 39 compounds examined was 18%. However, significant enhancement of the electrospray signals of up to 106% were observed among different brands of LC–MS grade methanol from different manufacturers. The effect of methanol quality on signal response was found to be compound dependent. This study also demonstrated that the senescence of the methanol was important. Using an expired batch of LC–MS grade methanol, electrospray signals were suppressed by as much as 95% for all compounds measured using positive mode electrospray. Conversely, the negative mode electrospray signals of compounds such as 4-octyl benzoic acid showed an enhancement of up to 96% when using the same batch of methanol. Linuron was used as a model compound to examine the change in the electrospray response, during gradient elution, when the proportion of an expired batch of methanol was varied. An infusion experiment showed that the linuron signal intensity decreased as the proportion of expired methanol increased in the mobile phase, which was in direct contrast to the increase in linuron signal observed with a non-expired batch of methanol. A series of isocratic experiments also showed that the linuron signal decreased as the proportion of expired methanol increased in the mobile phase. The ion ratios of several of the compounds studied changed significantly when using the expired batch of LC–MS methanol. The change in the ion ratios accentuates the difficulty of identifying compounds from in-source spectral libraries. A protocol is recommended for assessing the quality of methanol for LC–MS applications.  相似文献   

12.
The advantage of using a stepwise gradient of buffer concentration in CEC was demonstrated with the mixed-mode stationary phase, 3-(4-sulfo-1,8-naphthalimido)propyl-modified silyl silica gel (SNAIP). Before the application of a stepwise gradient, the effect of buffer concentration on the separations of six peptides and tryptic digests was investigated. Bubble formation caused by Joule heating at currents up to 95 microA was successfully suppressed by using SNAIP column even without pressurization, which contributed to a stepwise gradient of buffer concentration. Utilizing the stepwise gradient improved and shortened the separation of six peptides as compared to the separation under an isocratic elution.  相似文献   

13.
A pressurized electrochromatography (pCEC) instrument with gradient capability was used in this work for separation of peptides. Three separation modes, namely, pCEC, high-performance liquid chromatography and capillary electrophoresiscan be carried out with the instrument. In pCEC mode, the mobile phase is driven by both electroosmotic flow and pressurized flow, facilitating fine-tuning in selectivity of neutral and charged species. A continuous gradient elution can be carried out conveniently on this instrument, which demonstrates that it is more powerful than isocratic pCEC for separation of complicated samples. The effects of applied voltage, supplementary pressure and ion-pairing agents on separation of peptides in gradient pCEC were investigated. The effects of flow-rate of the pump and the volume of the mixer on resolution were also evaluated.  相似文献   

14.
A high‐performance liquid chromatography tandem–mass spectrometry (HPLC‐MS/MS) method has been developed to analyze anthocyanins in urine and plasma to further understand their absorption, distribution, metabolism and excretion. The method employed a Synergi RP‐Max column (250 × 4.6 mm, 4 μm) and an API 4000 mass spectrometer. A gradient elution system consisted of mobile phase A (water–1% formic acid) and mobile phase B (acetonitrile) with a flow rate of 0.60 mL/min. The gradient was initiated at 5% B, increased to 21% B at 20 min, and then increased to 40% B at 35 min. The analysis of anthocyanins presents a challenge because of the poor stability of anthocyanins during sample preparation, especially during solvent evaporation. In this method, the degradation of anthocyanins was minimized using protein precipitation and dilute‐and‐shoot and sample preparation methods for plasma and urine, respectively. No interferences were observed from endogenous compounds. The method has been used to analyze anthocyanin concentrations in urine and plasma samples from volunteers administered saskatoon berries. Cyanidin‐3‐galactoside, cyanidin‐3‐glucoside, cyanidin‐3‐arabinoside, cyanidin‐3‐xyloside and quercetin‐3‐galactoside, the five major flavonoid components in saskatoon berries, were identified in plasma and urine samples.  相似文献   

15.
The application of a silica hydride modified stationary phase with low organic loading has been investigated as a new type of chromatographic material suitable for the separation and analysis of peptides with electrospray ionization mass spectrometric detection. Retention maps were established to delineate the chromatographic characteristics of a series of peptides with physical properties ranging from strongly hydrophobic to very hydrophilic and encompassing a broad range of pI values (pI 5.5-9.4). The effects of low concentrations of two additives (formic acid and acetic acid) in the mobile phase were also investigated with respect to their contribution to separation selectivity and retention under comparable conditions. Significantly, strong retention of both the hydrophobic and the hydrophilic peptides was observed when high-organic low-aqueous mobile phases were employed, thus providing a new avenue to achieve high resolution peptide separations. For example, simultaneous separation of hydrophobic and hydrophilic peptides was achieved under aqueous normal phase (ANP) chromatographic conditions with linear gradient elution procedures in a single run, whilst further gradient optimization enabled improved peak efficiencies of the more strongly retained hydrophobic and hydrophilic peptides.  相似文献   

16.
T. Takeuchi  T. Miwa 《Chromatographia》1995,41(3-4):148-152
Summary Fluorimetric detection in the presence of a stationary phase has been applied to gradient elution of dansyl amino acids in liquid chromatography. A 1.5 mm ID quartz tube packed with the same materials as the separation column was employed for the flow cell. Conventional-size columns were employed. The peak height of analytes increased with increasing retention owing to focusing and environmental effects of the stationary phase, leading to improvements in sensitivity, which was pronounced for analytes eluting late. The lower the gradient, the larger the improvement in sensitivity achieved. Detection limits were improved by a factor of up to 5.1 by fluorimetric detection using the packed flow cell, compared with those achieved using a common empty flow cell.  相似文献   

17.
苏莉  张勇  黄可明 《色谱》2006,24(6):578-580
利用制备型高效液相色谱从3-甲基吡啶光氯化产物中分离纯化得到2-氯-5-三氯甲基吡啶,对制备色谱的洗脱方式、洗脱剂组成及浓度、进样量等参数进行了优化。使用的制备柱为Zorbax-C18柱,以乙腈-水为流动相,采用速度梯度洗脱方式进行洗脱,用二极管阵列检测器在240 nm波长下检测,进样体积为100 μL。该方法的制备回收率为82.7%,相对标准偏差为4.0%(n=5),产品纯度为99.01%。  相似文献   

18.
T. Takeuchi  T. Miwa 《Chromatographia》1995,41(5-6):148-152
Summary Fluorimetric detection in the presence of a stationary phase has been applied to gradient elution of dansyl amino acids in liquid chromatography. A 1.5 mm ID quartz tube packed with the same materials as the separation column was employed for the flow cell. Conventional-size columns were employed. The peak height of analytes increased with increasing retention owing to focusing and environmental effects of the stationary phase, leading to improvements in sensitivity, which was pronounced for analytes eluting late. The lower the gradient, the larger the improvement in sensitivity achieved. Detection limits were improved by a factor of up to 5.1 by fluorimetric detection using the packed flow cell, compared with those achieved using a common empty flow cell.  相似文献   

19.
An alternative expression of the fundamental equation of multi-mode gradient elution involving simultaneous changes in mobile phase composition and flow rate is derived using simple kinetic arguments and graphic interpretation. The new expression consists of a system of two integral equations and provides an easy and direct way of predicting retention times under dual-mode gradient conditions.  相似文献   

20.
Complementing classical isocratic elution, several more sophisticated operating modes have been proposed and are applied in preparative chromatography in order to improve performance. One such approach is gradient elution, where the solvent strength is altered by varying the fraction of a modifier added to the mobile phase to enhance selectivity and to achieve faster elution. Another useful technique is closed-loop recycling, allowing better peak resolution and increased yields. This study focuses on a modified new scheme which incorporates the advantages of both gradient elution and closed-loop recycling for the separation of a ternary mixture where the intermediately eluting component is the target. A parametric study was carried out using typical adsorption isotherm parameters to elucidate the effects of varying loading factors and parameters specific to the two basic operational modes on production rates and yields. A comparison was also made between the proposed scheme and conventional techniques. It was found that the studied scheme could exploit increased column loadings and offers significantly higher production rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号