首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ti–13Nb–13Zr was coated with diamond‐like carbon (DLC) and zirconium‐doped DLC by plasma‐enhanced chemical vapor deposition and sputtering. The corrosion current of the substrate is not affected after coating, and corrosion potential shifts towards nobler values in Hanks' solution. Electrochemical impedance spectroscopy studies show that Zr‐DLC samples behave like an ideal capacitor. Field emission scanning electron microscopy (FESEM) images after 7 days of immersion show absence of apatite on DLC‐coated sample and its presence on Zr‐doped DLC, but to a lesser extent as compared with that on the uncoated substrate. XPS and Energy‐dispersive X‐ray spectroscopy (EDS) of samples immersed in Hanks' solution show presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Zr‐DLC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The biomedical application of carbon/carbon (C/C) composites is limited by lacking bioactivity and releasing carbon debris. Hydroxyapatite (HA) coating has been used to improve the bioactivity of C/C composites, but it cannot reduce the release of carbon debris effectively because of poor wear resistance property. In this work, a wear‐resistant layer of diamond like carbon (DLC) is applied on C/C composites, followed by an ultrasound‐assisted electrochemical deposition to prepare HA coatings. The microstructure, morphology and chemical composition of the DLC layer and the HA coating are characterised by scanning electron microscopy, X‐ray diffraction, energy dispersive spectroscopy (EDS), X‐ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and Raman spectrum. The bonding strength between the HA coating and the DLC layer modified C/C composites is examined by a tensile test. The results show that the DLC layer has a spherical morphology and provides a uniform surface for the deposition of the HA coating. The HA coating shows flaky morphology with a compact structure. The tensile strength of the HA coating on the DLC layer modified C/C composites is 6.24 ± 0.40 MPa, which is significantly higher than that of HA coating on unmodified C/C composites(3.04 ± 0.20 MPa). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This study is focused on Raman spectroscopy investigations of differently deposited diamond-like carbon (DLC) layers due to varying: (i) Ar and/or N2 flow rate, (ii) number of impulses, and (iii) bias voltage during the growth process. Samples were prepared by a physical vapor deposition method in a pulse arc system. It is shown that Ar and N2 flow rates as well as the bias voltage influence the morphology and chemical composition of the deposited DLC layers. By changing the number of impulses, the number of carbon atoms sputtered from target in the vacuum chamber changes, which is reflected in the thickness and morphology of the DLC layers. Visible light Raman spectroscopy of 632 nm excitation wavelength was used for deep analysis of the deposited layers.  相似文献   

4.
以甲醇有机溶液作碳源,应用直流脉冲电化学沉积方法,在不锈钢表面制备了类金刚石碳薄膜.用原子力显微镜、扫描电镜、拉曼光谱仪和傅立叶红外吸收光谱表征该薄膜的表面形貌和结构.结果表明:经电化学沉积的含氢类金刚石碳薄膜均匀、致密,表面粗糙度小;Raman光谱在1 332.51cm-1处有一强的谱峰,与金刚石的特征谱峰相重合.加入活性添加剂,增加了电流密度,使沉积速率提高到0.5μm/h.  相似文献   

5.
A detailed characterization of platinum- and gold-diamondlike carbon (DLC) nanocomposite films deposited onto silicon substrates is presented. A modified pulsed laser deposition (PLD) technique was used to incorporate noble metal nanoclusters into hydrogen-free DLC films. Several analytical techniques, including transmission electron microscopy, atomic force microscopy, Rutherford backscattering spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation testing, were used to investigate these thin films in an effort to determine their physical and electrochemical properties. Rutherford backscattering spectroscopy indicated that the gold- and platinum-DLC films contain metal concentrations between three and 36 atomic percent. Cross-sectional transmission electron microscopy revealed that metal is present as arrays of noble metal islands embedded within the DLC matrix, while atomic force microscopy provided evidence of target splashing. In addition, due to the inclusion of metal, metal-DLC thin films exhibited greater conductivity than their metal-free counterparts. The electrochemical properties were studied using quasi-reversible redox couples and correlated to the metal concentration. Finally, the influence of the layer's composition on the electron-transfer kinetics and the achievable working potential window is discussed. The results discussed herein suggest that metal-DLC thin films grown by pulsed laser deposition present a promising alternative electrode material for electrochemistry.  相似文献   

6.
Diamond‐like carbon (DLC) films on glass wafers were produced by middle frequency pulsed unbalanced magnetron sputtering technique (MFPUMST) at different sputtering current. The chemical bonding of carbon characterized by Raman spectroscopy and X‐ray photoelectron spectroscopy (XPS) show that the sp3 fraction in DLC films increases with increasing sputtering current from 100 to 300 mA, and then decreases above 300 mA. Mechanical properties like nano‐hardness and elastic recovery for these films under different sputtering currents analyzed by a nano‐indentation technique show the same tendency that nano‐hardness and elastic recovery increase with increasing sputtering current from 100 to 300 mA, and then decrease with increasing sputtering current from 300 to 400 mA. These results indicate that the sp3 fraction in the prepared DLC films is directly related to nano‐hardness and elastic recovery. The results shown above indicate that the parameter of the preparation—sputtering current has a strong influence on the bonding configuration of the deposited DLC films. The mechanism of sputtering current on the sp3 fraction is discussed in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Because of their outstanding characteristics, diamond‐like carbon (DLC) thin films have been recognized as interesting materials for a variety of applications. For this reason, the effects of the incorporation of different elements on their fundamental properties have been the focus of many studies. In this work, nitrogen‐incorporated DLC films were deposited on Si (100) substrates by DC magnetron sputtering of a graphite target under a variable N2 gas flow rate in CH4 + N2 + Ar gas mixtures. The influence of high N2 flow ratios (20, 40 and 60%) on the chemical, structural and morphological properties of N‐DLC films was investigated. Different techniques including field emission gun‐equipped scanning electron microscope (FEG‐SEM), energy‐dispersive X‐ray spectroscopy (EDS), atomic force microscopy (AFM), profilometry, Rutherford backscattering spectrometry (RBS) and Raman spectroscopy (325‐nm and 514‐nm excitation) were used to examine the properties of the N‐DLC films. Thus, the incorporation of nitrogen was correlated with the morphology, roughness, thickness, structure and chemical bonding of the films. Overall, the results obtained indicate that the fundamental properties of N‐DLC films are not only related to the nitrogen content in the film but also to the type of chemical bonds formed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A simple, environmentally benign and energy efficient process for fabricating single faced superhydrophilic/hydrophobic cotton fabrics by controlling surface texture and chemistry at the nano/microscale is reported here. Stable ultra-hydrophobic surfaces with advancing and receding water droplet contact angles in excess of 146° as well as extreme superhydrophilic surfaces are obtained. Hydrophobic water-repellent cotton fabrics were obtained following plasma treatment through diamond-like carbon (DLC) coating by plasma enhanced chemical vapour deposition. The influence of changing different precursor’s plasma pre-treatments such as H2, Ar or O2 on the properties of DLC coatings is also evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, and analysed in terms of contact angle measurements. Because of the DLC coating, the coated fabric showed to endure its superhydrophobic character even after 12 months.  相似文献   

9.
The friction behavior of diamond-like carbon (DLC) is very sensitive to the test environment. For hydrogen-rich DLC tested in dry argon and hydrogen, there was always an induction period, so-called "run-in" period, during which the friction coefficient was high and gradually decreased before DLC showed an ultralow friction coefficient (less than 0.01) behavior. Regardless of friction coefficients and hydrogen contents, small amounts of wear were observed in dry argon, hydrogen, oxygen, and humid argon environments. Surprisingly, there were no wear or rubbing scar on DLC surfaces tested in n-pentanol vapor conditions, although the friction coefficient was relatively high among the five test environments. Ex situ X-ray photoelectron and near-edge X-ray absorption fine-structure spectroscopy analyses failed to reveal any differences in chemical composition attributable to the environment dependence of DLC friction and wear. The failure of getting chemical information of oxygenated surface species from the ex situ analysis was found to be due to facile oxidation of the DLC surface upon exposure to air. The removal or wear of this surface oxide layer is responsible for the run-in behavior of DLC. It was discovered that the alcohol vapor can also prevent the oxidized DLC surface from wear in humid air conditions.  相似文献   

10.
We fabricate F-doped and F-S-codoped diamond-like carbon (DLC) films using plasma-enhanced chemical vapor deposition system. The hardness, Raman spectra, and high-vacuum tribological behaviors indicate that the films are DLC films. The hardness is close related to the tribological properties of DLC films under high vacuum. The high hardness of DLC films would be helpful for obtaining the long lifetime under high vacuum. The lifetimes of F-S-codoped DLC films are about 120 and 140 seconds, which is attributed to the fast graphitization under high vacuum. The lifetime of F-doped DLC films is prolonged to the value of around 300 and 440 seconds, X-ray photoelectron spectroscopy analysis exhibits the existence of the “adsorption” F, and transmission electron microscopy analysis shows that the “adsorption” F could react with Fe to form layered FeF2 nanocrystal at the initial sliding, which could be helpful for prolonging the lifetime of F-doped DLC films under high vacuum. This investigation opens a new window to overcome the disadvantage of F, S-doped DLC films under high vacuum.  相似文献   

11.
Plasma enhanced chemical vapor deposition (PECVD) technique using pulsed-DC power supply was used to fabricate diamond like carbon (DLC) films at deposition rates as high as 110 nm/min. The DLC films deposited by pulsed-DC and DC based power supplies under different gas flow ratios were studied for their suitability as dielectric layer coatings in plasma display panels (PDPs). The effect of deposition parameters on the properties of the DLC films were studied using Fourier transform infra-red spectroscopy (FTIR) and spectroscopic ellipsometry (SE). FTIR reveals that higher hydrogen dilution in gas mixture leads to higher sp3 content. SE studies in wide spectral range were analyzed using Tauc-Lorentz model dielectric function. A rise in the extracted refractive index was seen on increasing the H2 content in the feed gas, thus resulting in optically denser films. Secondary electron emission coefficient (γ) was measured in the films deposited by the DC and pulsed-DC based PECVD. Firing voltage in the DLC samples was found to have very low variation in the operating pressure range used in commercial PDPs, suggesting possibility of enhanced long term reliability of DLC coatings in future PDP applications.  相似文献   

12.
Diamond-like carbon (DLC) coatings were indented 3000 to 15 000 times cyclically using a Si3N4 sphere having a diameter of 10 mm under a normal load of approximately 107 N. DLC coatings were prepared by unbalanced magnetron (UBM) sputtering under substrate bias voltage of −200 on a heat-treated and polished JIS SCM 415 substrates. SEM images and the energy dispersive X-ray spectrometry (EDX) results of the indented impressions showed that a Cr/C layer or substrate surface partially revealed on the impressions. In order to estimate structural alterations in DLC coatings after cyclic indentations, Raman spectroscopy were performed on the impressions. Relationships between Raman parameters such as the intensity ratio I(D)/I(G) of the disorder peak around 1350 cm−1 and the graphitic peak around 1580 cm−1 and full width of half maximum of the G peak (FWHM(G)) were estimated with the Raman spectroscopy on the impressions. Enclosed area by maximum and minimum of I(D)/I(G) and FWHM(G) was defined as “Safety Zone” in this paper, and it can be used to determine integrity of DLC coatings.  相似文献   

13.
The tribological properties of Si3N4 ball sliding against diamond‐like carbon (DLC) films were investigated using a ball‐on‐disc tribometer under dry friction and oil lubrications, respectively. The influence of nano boron nitride particle as lubricant additive in poly‐α‐olefin (PAO) oil on the tribological properties of Si3N4/DLC films was evaluated. The microstructure of DLC films was measured by Raman spectroscopy and X‐ray photoelectron spectroscopy. The experimental results show coefficient of friction (COF) of Si3N4/DLC films was as low as 0.035 due to the formation of graphite‐like transfer films under dry friction condition. It also indicates that the tribological properties of Si3N4/DLC films were influenced significantly by the viscosity of oil and the content of nano boron nitride particle in PAO oil. COF increases with the viscosity of PAO oil increasing. Si3N4/DLC films exhibit the superlubricity behaviors (μ=0.001 and nonmeasurable wear) under PAO 6 oil with 1.0 wt% nano boron nitride particle lubrication, indicating that the improved boundary lubrication behaviors have indeed been responsible for the significantly reduced friction. Nano boron nitride additive is used as solid lubricant‐like nano scale ball bearing to the pointlike contact and a soft phase bond with the weak van der Waals interaction force on the contact surface to improve the lubrication behaviors of Si3N4/DLC films. The potential usefulness of nano boron nitride as lubricant additive in PAO oil for Si3N4/DLC films has been demonstrated under oil lubrication conditions. The present work will extend the wide application of nano particle additive and introduce a new approach to superlubricity under boundary lubrication in future technological areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Diamond‐like carbon (DLC) coatings are recognised as a promising way to reduce friction and improve wear performance of automotive engine components. DLC coatings provide new possibilities in the improvement of the tribological performance of automotive components beyond what can be achieved with lubricant design alone. Lubricants are currently designed for metallic surfaces, the tribology of which is well defined and documented. DLC does not share this depth of tribological knowledge; thus, its practical implementation is stymied. In this work, three DLC coatings are tested: an amorphous hydrogenated DLC, a silicone‐doped amorphous hydrogenated DLC and a tungsten‐doped amorphous hydrogenated DLC. The three coatings are tested tribologically on a pin‐on‐reciprocating plate tribometer against a cast iron pin in a group III base oil, and a fully formulated oil that consists of a group III base oil and contains ZDDP, at 100 °C for 6 h and for 20 h in order to determine whether a phosphor‐based tribofilm is formed at the contact. The formation of a tribofilm is characterised using atomic force microscopy and X‐ray photoelectron spectroscopy techniques. The main findings of this study are the formation of a transfer film at the undoped, amorphous hydrogenated DLC surface, and also the tungsten amorphous hydrogenated DLC having a significant wear removal during the testing. The three coatings were found to have differing levels of wear, with the tungsten‐doped DLC showing the highest, the silicon‐doped DLC showing some coating removal and the amorphous hydrogenated DLC showing only minimal signs of wear. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Phosphorus doped diamond-like carbon (DLC) films were firstly synthesized by the electrolysis of methanol-Triphenylphosphorus (PPh3) solution under high voltage, atmospheric pressure and low temperature. The microstructure and morphology of the as-deposited films were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The measurements results suggested that phosphorus doping enhanced the carbon films graphitization and the doped phosphorus existed mainly in CP bonds with the P/C ratio of 0.034. The P-DLC films have larger surface roughness compared to the DLC film. Moreover, the formation of P-DLC films in liquid-phase electrodeposition was via the reactions of the –CH3 and –P groups to form CPx network.  相似文献   

16.
Multilayered diamond‐like carbon (DLC) nanocomposite coating has been deposited on silicon and stainless steel substrates by combination of cathodic arc evaporation and magnetron sputtering. In order to make DLC coating adhered to metal substrate, a chromium interlayer has been deposited with constant bias voltage of −150 V applied to the substrate. Dense multilayered coating consists of metallic or nonmetallic and tetrahedral carbon (ta‐C) layers with total thickness of 1.44 μm. The coating has been studied for composition, morphology, surface nature, nanohardness, corrosion resistance, and tribological properties. The composition of the coating has been estimated by energy‐dispersive spectroscopy. Field‐emission scanning electron microscopy and atomic force microscopy have been used to study the surface morphology and topography. ID/IG ratio of ta‐C:N layer obtained from Raman spectroscopy is 1.2, indicating the disorder in the layer. X‐ray photoelectron spectroscopy studies of individual ta‐C:N, CrN, and Cr‐doped DLC layers confirm the presence of sp2C, sp3C, CrN, Cr2N, and carbidic carbon, and sp2C, sp3C, and Cr carbide. Nanohardness studies show the maximum penetration depth of 70 to 85 nm. Average nanohardness of the multilayered DLC coating is found to be 35 ± 2.8 GPa, and Young's modulus is 270 GPa. The coating demonstrates superior corrosion resistance with better passivation behavior in 3.5% NaCl solution, and corrosion potential is observed to move towards nobler (more positive) values. A low coefficient of friction (0.11) at different loads is observed from reciprocating wear studies. Wear volume is lower at all loads on the multilayered DLC nanocomposite coating compared to the substrate.  相似文献   

17.
Diamond‐like carbon (DLC) coatings are getting new trends for cutting tool applications. In this research work, the DLC coatings were deposited on 15 × 15 × 5‐mm tungsten carbide cobalt substrates with variation of bias voltage from 0 to 500 V. The DLC films of 400 nm were deposited using filter cathode vacuum arc system, and 100‐nm chromium interlayer was deposited by sputtering. The optimized conditions for plasma pretreatment at different argon flow rates and deposition rates with bias variation were found. The effect of bias voltage on microstructure, tribology, adhesion, and mechanical properties were evaluated. The characterization techniques employed were field emission electron microscopy, Raman spectroscopy, wear test, SEM, scratch test, and nano‐indentation. The effect of substrate pretreatment on film adhesion was also evaluated. It was observed that etching rate increased with the increase in Ar flow rate while DLC deposition and sputtering rates decreased with increase in the bias voltage. The characterization suggests the DLC coatings deposited at 0 V bias as optimum condition because of showing the best results among all other conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
With admixture of n-diamond and diamond-like carbon powders (DLC) as carbon source, transparent wafers have been synthesized by hydrothermal process at 100℃ and atmosphere pressure. Scanning electron microscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, electron-probe microanalysis and Fourier-transform infrared spectrometer were used to analyze those transparent wafers. These results indicated that the transparent wafers were amorphous sp^3-banding carbon wafer, and that the wafers were not aggregate of DLC from the carbon source but a new kind of reaction product by hydrothermal treatment.  相似文献   

19.
Titanium/diamond‐like carbon (Ti/DLC) bilayer films with different relative thickness were fabricated by direct‐current and pulsed cathode arc plasma method. Microstructure, morphological characteristics, and mechanical properties of the films were investigated in dependence of the thickness of Ti and DLC layers by Raman spectroscopy, atomic force microscopy, Knoop sclerometer, and surface profilometer. Raman spectra of Ti/DLC bilayers show the microstructure evolution (the size and ordering degree of sp2‐hybridized carbon clusters) with varying the thicknesses of Ti interlayer and DLC layer. Nano‐scaled Ti interlayer of 12–20 nm thickness presents the largest size effect. The catalytic effect of the sublayer is most pronounced in the carbon layer of less than 106 nm. In these thickness ranges, the bilayer films possessed the highest micro‐hardness and reactivity between atoms at interface. Internal stress in the bilayer monotonically decreases, with the thickness of Ti interlayer increasing to 30 nm and then becomes stable with the thickness. These results are associated with the occurrence of atomic diffusion process at Ti/C interface, and they are of cardinal significance to optimize the structure and mechanical properties of carbon‐based multilayer films. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The vibrational property of 2,3,6,7,10,11-hexakis(hexyloxy)triphenylene (HAT6) discotic liquid crystal (DLC) material is investigated in this research by using temperature-dependent Raman spectroscopy technique. One-dimensional (1D) charge transport mechanism in the DLC molecules is enabled in the columnar liquid crystalline (Dh) phase. The result indicates a high core-to-core correlation in the liquid crystal columnar phase, which has a ‘memory’ like effect that extends into isotropic phase at femtosecond timescale. This correlation is also confirmed through electrical conductivity measurement of DLCs, in which the electrical conductivity is enhanced in the DLC phase. DFT simulation was also carried out in order to elucidate the basic properties of HAT6 such as the band gap in the light of Raman spectra. An interesting outcome is that a freely unspecified boundary model produces in a more flexible molecule, resulting in a reduced band gap. Thus, this work provides an understanding of relationship between columnar order and electrical conductivity of HAT6 molecule, and potential strategy for design of DLCs in electronics application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号