首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three‐dimensional (3D) printing brings exciting prospects to the realm of conjugated polymers (CPs) and organic electronics through vastly enhanced design flexibility, structural complexity, and environmental sustainability. However, the use of 3D printing for CPs is still in its infancy and remains full of challenges. In this review, we highlight recent studies that demonstrate proof‐of‐concept strategies to mitigate some of these problems. Two general additive manufacturing approaches are featured: direct ink writing and vat photopolymerization. We conclude with an outlook for this thriving field of research and draw attention to the new possibilities that 3D printing can bring to CPs. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1592–1605  相似文献   

2.
The association of linear or macrocyclic polyethers with the electronic properties of the π-conjugated polythiophene backbone leads to functional conducting polymers that exhibit metal cation dependent electronic properties. Based on this concept, various classes of cation sensors have been proposed and investigated for almost two decades. The interactions of metal cations with linear or macrocyclic polyether functional groups lead to modifications of the electronic properties of the π-conjugated backbone through various mechanisms including direct electronic effects on a single conjugated chain, collective electrochemical processes, or conformational changes. Conjugated polymers and oligomers representative of these various processes are discussed with an emphasis on recent examples of derivatized conjugated systems in which the interactions between metal cations and polyether groups serve as driving force to create molecular motion in conjugated systems.  相似文献   

3.
In the past few decades, conjugated polymers have aroused extensive interest in organic electronic applications. The electrical performance of conjugated polymers has a close relationship with their backbone conformation. The conformation of the polymer backbone strongly affects the πelectron delocalization along polymer chains, the energy band gap, interchain interactions, and further affects charge transport properties. To realize a rigid coplanar backbone that usually possesses efficient intrachain charge transport properties and enhanced π–π stackings, such conformation control becomes a useful strategy to achieve high-performance (semi)conducting polymers. This minireview summarizes the most important polymer structures through conformation control at the molecular level, and then divides these rigid coplanar conjugated polymers into three categories: 1) noncovalent interactions locked conjugated polymers; 2) double-bond linked conjugated polymers; 3) ladder conjugated polymers. The effect of the conformation control on physical nature, optoelectronic properties, and their device performance is also discussed, as well as the challenges of chemical synthesis and structural characterization.  相似文献   

4.
Despite the diverse research activities focused on the chemistry, materials science and physics of conjugated polymers, the feature of conjugated cross-links, which can provide electronic communication between chains, has received little attention. This situation may be a direct consequence of the challenge to introduce such links while retaining adequate processability. Focusing on recent studies of materials for which charge transport or electrical conductivity data are available, this feature article attempts to present an overview of the synthesis, processing and electronic properties of conjugated polymer networks. For the purpose of this discussion, two distinctly separate architectures-featuring covalent cross-links on the one hand and non-covalent organometallic bridges on the other-are treated in separate sections. The available data indicate that cross-linking can have significant benefits for intermolecular charge transfer if the polymers are carefully designed.  相似文献   

5.
Since their discovery, electrically conductive polymers have gained immense interest both in the fields of basic and applied research. Despite their vast potential in the fabrication of efficient, flexible, and low‐cost electronic and optoelectronic devices, they are often difficult to process by wet‐chemical methods due to their very low to poor solubility in organic solvents. The use of vapor‐based synthetic routes, in which conductive polymers can be synthesized and deposited as a thin film directly on a substrate from the vapor phase, provides many unique advantages. This article discusses oxidative vapor deposition processes, primarily vapor phase polymerization and oxidative chemical vapor deposition, of conjugated polymers and their applications. The mild operating conditions (near room temperature processing) allow conformal and functional coatings of conjugated polymers on delicate substrates. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

6.
Linear conjugated polymers have attracted significant attention in organic electronics in recent decades. However, despite intrachain π-delocalization, interchain hopping is their transport bottleneck. In contrast, two-dimensional (2D) conjugated polymers, as represented by 2D π-conjugated covalent organic frameworks (2D c-COFs), can provide multiple conjugated strands to enhance the delocalization of charge carriers in space. Herein, we demonstrate the first example of thiophene-based 2D poly(arylene vinylene)s (PAVs, 2DPAV-BDT-BT and 2DPAV-BDT-BP , BDT=benzodithiophene, BT=bithiophene, BP=biphenyl) via Knoevenagel polycondensation. Compared with 2DPAV-BDT-BP , the fully thiophene-based 2DPAV - BDT - BT exhibits enhanced planarity and π-delocalization with a small band gap (1.62 eV) and large electronic band dispersion, as revealed by the optical absorption and density functional calculations. Remarkably, temperature-dependent terahertz spectroscopy discloses a unique band-like transport and outstanding room-temperature charge mobility for 2DPAV-BDT-BT (65 cm2 V−1 s−1), which far exceeds that of the linear PAVs, 2DPAV-BDT-BP , and the reported 2D c-COFs in the powder form. This work highlights the great potential of thiophene-based 2D PAVs as candidates for high-performance opto-electronics.  相似文献   

7.
3D printing is a powerful emerging technology for the tailored fabrication of advanced functional materials. This Review summarizes the state‐of‐the art with regard to 3D laser micro‐ and nanoprinting and explores the chemical challenges limiting its full exploitation: from the development of advanced functional materials for applications in cell biology and electronics to the chemical barriers that need to be overcome to enable fast writing velocities with resolution below the diffraction limit. We further explore chemical means to enable direct laser writing of multiple materials in one resist by highly wavelength selective (λ‐orthogonal) photochemical processes. Finally, chemical processes to construct adaptive 3D written structures that are able to respond to external stimuli, such as light, heat, pH value, or specific molecules, are highlighted, and advanced concepts for degradable scaffolds are explored.  相似文献   

8.
Additive manufacturing and 3D printing in particular have the potential to revolutionize existing fabrication processes, where objects with complex structures and shapes can be built with multifunctional material systems. For electrochemical energy storage devices such as batteries and supercapacitors, 3D printing methods allows alternative form factors to be conceived based on the end use application need in mind at the design stage. Additively manufactured energy storage devices require active materials and composites that are printable, and this is influenced by performance requirements and the basic electrochemistry. The interplay between electrochemical response, stability, material type, object complexity and end use application are key to realising 3D printing for electrochemical energy storage. Here, we summarise recent advances and highlight the important role of methods, designs and material selection for energy storage devices made by 3D printing, which is general to the majority of methods in use currently.  相似文献   

9.
Direct C H arylation coupling reaction has gained significant importance in synthesis of conjugated polymers for organic electronic applications. We report here a facile and straightforward method called “direct C H arylation” reaction to synthesize conjugated 3,4-dioxythiophene and 1,4-dialkoxybenzene based copolymers as hole transport material (HTM) for perovskite solar cells. Two electron-rich conjugated polymers P1-2 were synthesized, in which 1,4-dibromo-2,5-bis(dodecyloxy)benzene and 3,4-dialkoxy-thiophene units were used for polymerization. The resulting polymers were characterized and exhibited high solubility in organic solvents. Electrochemical and optical characterizations were carried out by cyclic voltammetry and UV–Vis–NIR absorption spectroscopy and found that these polymers show higher-lying HOMO energy levels with wide band gap. Density functional theory calculation was performed on these polymers ( P1-2 ) and correlated with our experimental results. Finally, perovskite solar cells were fabricated by solution-processable deposition of P1-2 as dopant-free HTM with device geometry ITO/SnO2/Perovskite/HTM( P1 / P2 )/Ag and achieved a maximum power conversion efficiency of 5.28%. This study provides information on designing and simple preparation by direct C H arylation reaction of higher-lying HOMO energy level polymer as HTM for perovskite solar cells.  相似文献   

10.
Functional organic molecular materials and conjugated oligomers or polymers now allow the low-cost fabrication of thin films for insertion into new generations of electronic and optoelectronic devices. The performance of these devices relies on the understanding and optimization of several complementary processes. Our goal is to discuss the relationship between the molecular stacking structures and their optoelectronic properties that are of importance in all these areas. The concept of intermolecular interaction should be taken here in the special sense that is inter-dipole coupling. Specifically, we will address the impact of inter-dipole interaction between adjacent molecules in aggregate state on the solid-state emission properties.  相似文献   

11.
Functional organic molecular materials and conjugated oligomers or polymers now allow the low-cost fabrication of thin films for insertion into new generations of electronic and optoelectronic devices. The performance of these devices relies on the understanding and optimization of several complementary processes. Our goal is to discuss the relationship between the molecular stacking structures and their optoelectronic properties that are of importance in all these areas. The concept of intermolecular interaction should be taken here in the special sense that is inter-dipole coupling. Specifically, we will address the impact of inter-dipole interaction between adjacent molecules in aggregate state on the solid-state emission properties.  相似文献   

12.
Liquid metals (LM) have shown a very broad development prospect over the past decades. This review article focuses on the latest research dedicated to liquid metal materials and their applications in five significant areas: stretchable conductive composite, intelligent sensing electronic skin, catalysis, 3D printing material, and driving machines. The fabrication, specific properties and application of stretchable liquid metal-polymer composites that can be used as self-healing materials have been summarized. Liquid metal deposition printing technology, liquid phase 3D printing, suspension 3D printing technology, micro-contact printing technology, and in vivo 3D printing molding technology have also been reviewed. Furthermore, the application of liquid metal catalyst in aldehyde reaction, photocatalysis, and electrocatalysis have been discussed. We have shown that electricity, magnetism, sound, light and heat could stimulate the movement of liquid metal. Through this comprehensive overview of the latest research, the main practical application, development, and mechanism of liquid metal were summarized and described. The future development of liquid metal technology was prospected, thus providing a strong basic research support for the further development of LM materials and their applications.  相似文献   

13.
Amplification of molecular motions into the macroscopic world has great potential in the development of smart materials. Demonstrated here is an approach that integrates mechanically interlocked molecules into complex three‐dimensional (3D) architectures by direct‐write 3D printing. The design and synthesis of polypseudorotaxane hydrogels, which are composed of α‐cyclodextrins and poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO‐PPO‐PEO) triblock copolymers, and their subsequent fabrication into polyrotaxane‐based lattice cubes by 3D printing followed by post‐printing polymerization are reported. By switching the motion of the α‐cyclodextrin rings between random shuttling and stationary states through solvent exchange, the polyrotaxane monolith not only exhibits macroscopic shape‐memory properties but is also capable of converting the chemical energy input into mechanical work by lifting objects against gravity.  相似文献   

14.
共轭高分子材料特异的金属或半导体的电子特性兼有质轻、价廉、易于加工的优点使其在有机场效应晶体管、有机太阳能电池和有机发光二极管等领域显示了重要的应用前景.然而,尽管经过几十年的不断研究,共轭高分子材料种类及其相关器件性能均已得到显著发展,但是共轭高分子材料的本征电荷传输特性仍不清楚,其研究面临巨大挑战,这主要是由共轭高分子材料本身分子量分布弥散、分子间相互缠结以及在常规旋涂薄膜器件中分子高度无序等特性所决定的.从调控共轭高分子聚集态结构的角度出发,不断提高共轭高分子的结构有序性及减小电荷传输过程中的晶界及缺陷密度,是实现共轭高分子材料本征性能认识的有效途径之一.本文首先简单归纳总结了研究者在共轭高分子多尺度聚集态结构调控及性能研究方面的初步结果,进一步结合国内外相关研究进展,重点对共轭高分子晶体方面的工作展开详细介绍,最后对该领域未来发展的挑战及机遇进行了简单评述.  相似文献   

15.
3D printing techniques allow the laboratory‐scale design and production of reactionware tailored to specific experimental requirements. To increase the range and versatility of reactionware devices, sealed, monolithic reactors suitable for use in hydrothermal synthesis have been digitally designed and realized. The fabrication process allows the introduction of reaction mixtures directly into the reactors during the production, and also enables the manufacture of devices of varying scales and geometries unavailable in traditional equipment. The utility of these devices is shown by the use of 3D printed, high‐throughput array reactors to discover two new coordination polymers, optimize the synthesis of one of these, and scale‐up its synthesis using larger reactors produced on the same 3D printer. Reactors were also used to produce phase‐pure samples of coordination polymers MIL‐96 and HKUST‐1, in yields comparable to synthesis in traditional apparatus.  相似文献   

16.
We demonstrate site-selective chemical surface modification by dispensing potassium hydroxide solution onto polyimide, which confines source metallic ions that can subsequently be used in resist- and mask-free fabrication of copper circuit patterns. Metallization can be achieved by a wet chemical method, providing control over metal/polymer interfacial structures. Because the approach is compatible with other existing printing technologies and much simpler than conventional lithography-based methods, we propose that the present surface template method may be of general application in fabrication of metallized polymers as well as in development of integrated circuits with a variety of electronic circuit elements.  相似文献   

17.
3D printing techniques allow the laboratory‐scale design and production of reactionware tailored to specific experimental requirements. To increase the range and versatility of reactionware devices, sealed, monolithic reactors suitable for use in hydrothermal synthesis have been digitally designed and realized. The fabrication process allows the introduction of reaction mixtures directly into the reactors during the production, and also enables the manufacture of devices of varying scales and geometries unavailable in traditional equipment. The utility of these devices is shown by the use of 3D printed, high‐throughput array reactors to discover two new coordination polymers, optimize the synthesis of one of these, and scale‐up its synthesis using larger reactors produced on the same 3D printer. Reactors were also used to produce phase‐pure samples of coordination polymers MIL‐96 and HKUST‐1, in yields comparable to synthesis in traditional apparatus.  相似文献   

18.
《先进技术聚合物》2018,29(6):1586-1602
Three‐dimensional printing (3DP) technologies, which are sets of powerful deposition methods employed to fabricate 3D objects with materials in the fields of material sciences and engineering, biomedical and biocompatible structural components, automotive, aviation, and polymers, among others, are currently rapidly developing manufacturing technologies. The methods have significant advantages, which include designing flexibility, enhanced geometrical freedom, low cost, and net shape manufacture, among others, over the traditional “subtractive” method. This review highlights the major 3D printing techniques, especially in the fields of advanced polymeric material fabrication and engineering, as well as the synergy in the incorporation of different types of polymeric materials and composites in a process that will lead to an enhancement of dimensional accuracy for 3D technologies. Furthermore, composite ink systems especially polymer‐based and hydrogel‐based in tissue engineering applications are also discussed.  相似文献   

19.
Conjugated polymers, comprising fully π‐conjugated systems, present a new generation of heterogeneous photocatalysts for solar‐energy utilization. They have three key features, namely robustness, nontoxicity, and visible‐light activity, for photocatalytic processes, thus making them appealing candidates for scale‐up. Presented in this Minireview, is a brief summary on the recent development of various promising polymer photocatalysts for hydrogen evolution from aqueous solutions, including linear polymers, planarized polymers, triazine/heptazine polymers, and other related organic conjugated semiconductors, with a particular focus on the rational manipulation in the composition, architectures, and optical and electronic properties that are relevant to photophysical and photochemical properties. Some future trends and prospects for organic conjugated photocatalysts in artificial photosynthesis, by water splitting, are also envisaged.  相似文献   

20.
Reversible addition‐fragmentation chain‐transfer (RAFT) polymerization is a valuable tool for synthesizing macromolecules with controlled topologies and diverse chemical functionalities. However, the application of RAFT polymerization to additive‐manufacturing processes has been prevented due to the slow polymerization rates of typical systems. In this work, we developed and optimized a rapid visible (green) light mediated RAFT polymerization process and applied it to an open‐air 3D printing system. The reaction components are non‐toxic, metal free and environmentally friendly, which tailors these systems toward biomaterial fabrication. The inclusion of RAFT agent in the photosensitive resin provided control over the mechanical properties of 3D printed materials and allowed these materials to be post‐functionalized after 3D printing. Additionally, photoinduced spatiotemporal control of the network structure provided a one‐pass approach to 4D printed materials. This RAFT‐mediated 3D and 4D printing process should provide access to a range of new functional and stimuli‐responsive materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号