首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combination of molecularly imprinted polymers (MIPs) and solid phase extraction (SPE) is reviewed. MIPs, which have high selectivity and affinity for a predetermined molecule (template), have been used as sorbents for SPE to selectively isolate analytes from biological, pharmaceutical, and environmental samples. Solid phase extraction with molecularly imprinted polymers (MIP–SPE) is a promising technique which allows specific analytes to be selectively extracted from complex matrices. This survey summarizes the characteristics, development and application of MIP–SPE in recent years. Existed problems and the future direction of MIP–SPE are also discussed.  相似文献   

2.
Selective sample treatment using molecularly imprinted polymers   总被引:2,自引:0,他引:2  
The molecularly imprinted polymers (MIPs) are synthetic polymers possessing specific cavities designed for a target molecule. By a mechanism of molecular recognition, the MIPs are used as selective sorbents for the solid-phase extraction of target analytes from complex matrices. MIPs are often called synthetic antibodies in comparison with immuno-based sorbents; they offer some advantages including easy, cheap and rapid preparation and high thermal and chemical stability. This review describes the use of MIPs in solid-phase extraction with emphasis on their synthesis, the various parameters affecting the selectivity of the extraction, their potential to selectively extract analytes from complex aqueous samples or organic extracts, their on-line coupling with LC and their potential in miniaturized devices.  相似文献   

3.
Size-exclusion chromatography in 1,1,1,3,3,3-hexafluoro-2-propanol   总被引:1,自引:0,他引:1  
Two molecularly imprinted polymers (MIPs) have been synthesised for the selective extraction of 4-nitrophenol (4-NP) from water samples. One polymer was synthesised via a non-covalent approach and the other via a semi-covalent approach. The selectivity of the polymers for 4-NP was evaluated when these polymers were applied in on-line solid-phase extraction (MISPE) coupled to reversed-phase HPLC. The MISPE conditions for both MIPs were optimised and a clean-up step was included to eliminate non-specific interactions. Differences between the two MIPs were observed with the non-covalent MIP being the more selective of the two, whereas the recoveries were slightly higher for the semi-covalent MIP. The performance of the imprinted polymers in the MISPE of real water samples was also evaluated.  相似文献   

4.
Coumarin, 7-hydroxycoumarin and dicoumarol molecularly imprinted polymers (MIP) were synthesized by bulk polymerization. Methacrylic acid and 4-vinylpyridine were tested as functional monomers and methanol, ethanol, acetonitrile, toluene and chloroform were tested as porogens. The binding capabilities of the imprinted polymers were assessed by equilibrium binding analysis. Highest binding capacity was obtained for MIP prepared for the template 7-hydroxycoumarin synthesized in methacrylic acid as functional monomer, chloroform as porogen and methanol/water as analyte solvent. Scanning electron microscopy analysis documented its appropriate morphology. ATR-FTIR spectra confirmed successful polymerization of MIP. Coumarin structural analogues were employed to evaluate the polymer selectivity and it was found that polymer prepared for 7-hydroxycoumarin was selective for its template molecule. Kinetic studies showed relatively fast adsorption of analytes to MIPs (1 h). Rebinding properties of MIPs were evaluated by adsorption isotherms. The calculated data fitted well with experimental data showing that Freundlich isotherm is suitable for modelling the adsorption of tested coumarins on prepared MIPs. Applicability of polymer prepared for 7-hydroxycoumarin was tested for the selective extraction of coumarins from the sample of chicory.  相似文献   

5.
以吲哚美辛(IDM)为模板分子,丙烯酰胺(AA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,本体聚合法制备过程中加入纳米胶体金,合成了吲哚美辛胶体金分子印迹聚合物(MIPs/Au),利用MIPs/Au表面胶体金对蛋白吸附作用,将抗吲哚美辛的多克隆抗体固定在MIPs/Au上,得到表面固定有抗体的新型聚合物(MIPs/Au-Ab)并对其进行了表征。制备了填充材料为MIPs/Au-Ab的固相萃取柱并对其上样、淋洗和洗脱条件进行了优化,并将所制备的新型萃取柱用于水样中IDM的分离富集。抗吲哚美辛抗体交联在聚合物表面,不仅增加了萃取柱的特异性吸附容量,而且有效地降低了MIP的非特异性吸附。  相似文献   

6.
Three polymers have been synthesised using 4-chlorophenol (4-CP) as the template, following different protocols (non-covalent and semi-covalent) and using different functional co-monomers, 4-vinylpyridine (4-VP) and methacrylic acid (MAA). The polymers were evaluated to check their selectivity as molecularly imprinted polymers (MIPs) in solid-phase extraction (SPE) coupled on-line to liquid chromatography. The solid-phase extraction procedure using MIPs (MISPE), including the clean-up step to remove any interferences, was optimised. The 4-VP non-covalent polymer was the only one which showed a clear imprint effect. This MIP also showed cross-reactivity for the 4-chloro-substituted phenols and for 4-nitrophenol (4-NP) from a mixture containing the 11 priority EPA (Environmental Protection Agency) phenolic compounds and 4-chlorophenol. The MIP was applied to selectively extract the 4-chloro-substituted compounds and 4-NP from river water samples.  相似文献   

7.
Molecularly imprinted polymers (MIPs) displaying selective binding properties for the mycotoxin ochratoxin A (OTA) in polar/protic media were prepared. Crucial to the success of these efforts was the implementation of rationally designed OTA mimics as templates and a set of novel basic and neutral functional monomers, allowing the maximization of the template-functional monomer association via ion-pairing, hydrophobic and steric interactions. MIPs prepared with a 20:1:1:3 molar ratio of cross-linking agent, template mimic, basic functional monomer and hydrophobic auxiliary monomer produced polymers with superior recognition properties compared to materials generated with other stoichiometries. Chromatographic evaluation using the OTA mimics, OTA and a set of structurally closely related compounds as analytes revealed pronounced substrate selectivity of these MIPs in polar/protic media, the templates and OTA being bound with significantly higher affinities. Complementary substrate selectivities/affinities were observed in aprotic and apolar solvents. The possibility of solvent-dependent tuning of substrate selectivity/affinity and the high binding capacity recommend the developed MIPs as promising solid-phase extraction adsorbents for clean-up and pre-concentration of OTA from various biologically relevant matrices.  相似文献   

8.
Molecularly imprinted polymers (MIPs) for benzimidazole compounds have been synthesized by precipitation polymerization using thiabendazole (TBZ) as template, methacrylic acid as functional monomer, ethyleneglycol dimethacrylate (EDMA) and divinylbenzene (DVB) as cross-linkers and a mixture of acetonitrile and toluene as porogen. The experiments carried out by molecularly imprinted solid phase extraction (MISPE) in cartridges demonstrated the imprint effect in both imprinted polymers. MIP–DVB enabled a much higher breakthrough volume than MIP–EDMA, and thus was selected for further experiments. The ability of this MIP for the selective recognition of other benzimidazole compounds (albendazole, benomyl, carbendazim, fenbendazole, flubendazole and fuberidazole) was evaluated. The obtained results revealed the high selectivity of the imprinted polymer towards all the selected benzimidazole compounds.An off-line analytical methodology based on a MISPE procedure has been developed for the determination of benzimidazole compounds in tap, river and well water samples at concentration levels below the legislated maximum concentration levels (MCLs) with quantitative recoveries. Additionally, an on-line preconcentration procedure based on the use of a molecularly imprinted polymer as selective stationary phase in HPLC is proposed as a fast screening method for the evaluation of the presence of benzimidazole compounds in water samples.  相似文献   

9.
The existence of shape selectivity in non-covalent molecularly imprinted polymers (MIPs) has been proven using molecular probes. Twelve secondary amines with different sized side chains were imprinted, and enantioselectivity evaluated by HPLC for each amine on each imprinted polymer. Trends in the quantitative structure-binding relationships (QSBR) revealed two major contributions of cavity structure on selectivity afforded by molecularly imprinted polymers. First, sterics play a dominant role in cases where a molecules structure is too big too fit into an imprinted site formed from a smaller template molecule; e.g. on MIPs made with small templates, large analytes give separation factors (α) close to 1.0 (no selectivity), while small analytes give α values of 1.4. Second, molecular structures that are equal to or smaller than those of the template molecule are selected by maximizing Van der Waals interactions within the MIP binding site. Thus, MIPs made with large analytes give α values up to 2.5, while small analytes on the same MIPs give α values closer to 1.1. Template structure also has an effect on MIP enantioselectivity; e.g. branched structures exhibit a 1.7-fold improvement in separation factors (α) by MIPs made for isopropyl versus propyl derivatives, and cyclohexyl versus hexyl derivatives. Full details of these trends are provided in the text.  相似文献   

10.
Molecularly imprinted polymers (MIPs) are tailor-made polymers with high selectivity for a given analyte, or group of structurally related compounds. The influence of the process parameters (the moles of functional monomer and cross-linker, the selection of functional monomer and solvent) on the preparation of oseltamivir (OS)-imprinted polymers was investigated. A mathematical method for uniform design to optimize these selected parameters and to increase the MIP selectivity for template molecules was applied. The optimal conditions to synthesize MIP were 0.69 mmol 30% acrylamide (AA) + 70% 4-Vinylpyridine (4-VP) and 5.0 mmol ethylene glycol dimethacrylate (EGDMA) copolymerized in 5 ml toluene in the presence of 0.1 mmol OS. MIP showed high affinity and selectivity for separation of the template molecule from other compounds. In the present study, we have established an effective LC-MS/MS method to identify and quantify OS with good sensitivity, accuracy and precision.  相似文献   

11.
The analysis of alkyl alkylphosphonic acids, the degradation products of V and G nerve agents as VX, Sarin or Soman, is an important task for the verification of compliance to the Chemical Weapons Convention. The detection of these contaminants at low concentration levels is often difficult in complex matrices due to the amount of interfering substances. Molecularly imprinted solid-phase extraction technique should allow a selective extraction of these compounds from complex samples, and thus make their detection easier. Two molecularly imprinted polymers (MIPs) prepared with methacrylic acid (MAA) as monomer and pinacolyl methylphosphonic acid (PMPA) as template molecule were synthesised and tested. The first polymer, MIP A, was prepared with ethylene glycol dimethacrylate (EGDMA) in dichloromethane. The second polymer, MIP B, was synthesised using trimethylolpropane trimethacrylate (TRIM) in acetonitrile. To evaluate the selectivity provided by these MIPs, the retention of the ethyl methylphosphonic acid (EMPA) target molecule was studied in parallel on a non-imprinted polymer (NIP). While MIP A does not show any difference compared to NIP A, a good selectivity was obtained for MIP B. After the optimisation of the extraction process, 60% of EMPA can be removed from the NIP B without affecting the retention on the MIP B. A recovery of extraction of 93% was then obtained on the MIP B. Its capacity was then measured and corresponds to 97 microg of EMPA per gram of MIP. Finally, the selectivity of MIP B was clearly demonstrated by applying it to the clean-up of a soil extract spiked with EMPA.  相似文献   

12.
Molecularly imprinted polymers (MIPs) for fluoroquinolone antibiotics (FQs) have been synthesised in one single preparative step by precipitation polymerisation using ciprofloxacin (CIP) as template. Combinations of methacrylic acid (MAA) or 4-vinylpyridine (VP) as functional monomers, ethylene glycol dimethacrylate as crosslinker and dichloromethane, methanol, acetonitrile or toluene as porogens were tested. The experiments carried out by molecularly imprinted solid-phase extraction (MISPE) in cartridges did not allow to detect any imprint effect in the VP-based polymers whereas it was clearly observed in the MAA-based polymers. Among them, the MIP prepared in methanol using MAA as monomer showed the best performance and was chosen for further experiments. The ability of the selected MIP for the selective recognition of other widely used FQs (enoxacin, norfloxacin, danofloxacin and enrofloxacin) and quinolones (Qs) (cinoxacin, flumequine, nalidixic acid and oxolinic acid) was evaluated. The obtained results revealed the high selectivity of the obtained polymer, which was able to distinguish between FQs, that were recognised and retained onto the MIP cartridge, and Qs, which were washed out during loading and washing steps. The MIP was then packed into a stainless steel column (50mmx4.6mm i.d.) and evaluated as chromatography column for screening of FQs in soil samples. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve peak shape without sacrifying imprinting factor. Finally, under optimised conditions, soil samples spiked with CIP or with a mixture of fluoroquinolones in concentration of 0.5microgg(-1) were successfully analysed by the developed MIP-based procedures.  相似文献   

13.
The selective preconcentration of estradiol was explored using the recognition ability of a molecularly imprinted polymer (MIP) in the solid phase extraction (SPE) format. Polymeric particles were imprinted with 17β-estradiol using methacrylic acid as functional monomer and divinylbenzene as crosslinker. Binding studies of these polymeric particles towards 17β-estradiol showed selectivity over non-imprinted polymers, using acetonitrile as solvent. The imprinted polymer showed a recovery of 88% for β-estradiol in deionized water and 81% in surface water. The selectivity of the MIP over the non-imprinted polymer was relatively low, only 10% higher recovery. The results indicate that the MIP imprinted with 17β-estradiol does not appear to provide a viable approach to be used in a sample clean-up or enrichment step for the determination of estradiol in aqueous systems.  相似文献   

14.
Liu R  Guan G  Wang S  Zhang Z 《The Analyst》2011,136(1):184-190
To convert the binding events on molecularly imprinted polymers (MIPs) into physically detectable signals and to extract the templates completely are the great challenges in developing MIP-based sensors. In this paper, a core-shell nanostructure was employed in constructing the MIP chemosensor for the improvements of template extraction efficiency and imprinted sites accessibility. Vinyl-substituted zinc(II) protoporphyrin (ZnPP) was used as both fluorescent reporter and functional monomer to synthesize atrazine-imprinted polymer shell at silica nanoparticle cores. The template atrazine coordinates with the Lewis acid binding site Zn of ZnPP to form a complex for the molecular imprinting polymerization. These imprinted sites are located in polymer matrix of the thin shells (~8 nm), possessing better accessibility and lower mass-transfer resistance for the target molecules. The fluorescence properties of ZnPP around the imprinted sites will vary upon rebinding of atrazine to these imprinted sites, realizing the conversion of rebinding events into detectable signals by monitoring fluorescence spectra. This MIP probe showed a limit of detection (LOD) of about 1.8 μM for atrazine detection. The core-shell nanostructured MIP method not only improves the sensitivity, but also shows high selectivity for atrazine detection when compared with the non-molecular imprinted counterparts.  相似文献   

15.
Molecularly imprinted polymers (MIPs) are synthetic polymers designed to selectively extract target analytes from complex matrices (including biological matrices). The literature shows that MIPs have a degree of cross-selectivity from analytes within the same class of compounds. A commercially available MIP for tobacco-specific nitrosamines (TSNAs) is designed to be class selective for four TSNA compounds. This study sought to characterize the extent of cross-selectivity of the TSNA MIPs with other tobacco alkaloids. Cross-selectivity and recovery of the SupelMIP™ TSNA SPE cartridges was assessed with N-nitrosonornicotine (NNN), nicotine, cotinine and morphine. Their recoveries were compared with the recoveries of a nonimprinted polymer SPE cartridge, and two traditional SPE cartridges: a Waters mixed-mode cation exchange cartridge and a Waters hydrophilic–lipophilic balance cartridge. NNN and cotinine had the highest recoveries with the MIP cartridge, over 80%, and cotinine samples in urine had >80% recoveries. Nicotine had highly variable recoveries, possibly owing to differing chemical properties from the TSNAs. All three analytes had significantly different recoveries with the MIP cartridges compared with the traditional SPE cartridges. Morphine displayed nonspecific interactions with the MIP cartridges. Utilization of the TSNAs’ cross-selectivity allows for simultaneous extraction and identification of multiple tobacco biomarkers using one extraction technique.  相似文献   

16.
Journal of Thermal Analysis and Calorimetry - Molecularly imprinted polymers (MIP) have been used primarily to improve selectivity in solid-phase extraction. Synthetic MIPs composed by 2-vinyl...  相似文献   

17.
A broad selective molecularly imprinted polymers-based solid phase extraction (MISPE) for levonorgestrel (LNG) from water samples was developed. Using LNG as a template molecule, acrylamide (AA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as linking agent and bulk polymerisation as a synthetic method, the molecularly imprinted polymers (MIPs) were synthesised and characterised. The MIPs displayed a high specific rebinding for LNG with the imprinting factor of 3.71. The Scatchard analysis showed that there was at least one class of binding site for LNG formed in the MIPs with the dissociation constant of 8.046?µg?mL?1. The results of selectivity testing indicated that the MIPs also exhibited high cross-reactivity with structurally related compounds (estrone, methylprednisolone and ethinyl estradiol), but no recognition with non-structurally related compound (indomethacin), suggesting that the MIPs could be used as a broad recognition absorbent. MISPE column was prepared by packing MIPs particles into a common SPE cartridge. The MISPE extraction conditions including loading, washing and eluting solutions were carefully optimised. Water samples spiked with LNG were extracted by MISPE column and detected by high-performance liquid chromatography. The recoveries were found to be 79.97?~?132.79% with relative standard deviations (RSD) of 1.92?~?10.43%, indicating the feasibility of the prepared MIPs for LNG extraction.  相似文献   

18.
Molecular imprinted solid-phase extraction (MISPE) is a well known technique for the selective extraction and pre-concentration of analytes, are present at low levels in chemically complex materials. Herein, water-soluble, molecularly imprinted polymers (MIP) were prepared for solid-phase extraction of pseudoephedrine hydrochloride (PSE), which was monitored at 256 nm by the UV spectroscopy. MISPE conditions were optimized to allow the selective and determination of PSE in aqueous samples and composite materials, such as biological fluids and human urine. MIP was prepared by precipitation polymerization method, using methacrylic acid as a functional monomer and ethylene glycol dimethacrylate as a cross-linking agent in either acetonitrile or chloroform. The results suggest that the obtained MISPE exhibits high affinity for PSE, and the imprinted polymer demonstrates much higher efficiency than a non-imprinted polymer (NIP). The imprinting-induced extraction was confirmed by the determination of recovery values for NIP (4%) and MIP (80%) polymers, respectively. The binding capacity of the MIP for PSE was found of 47.6 mg g−1.  相似文献   

19.
A novel lysozyme imprinted polymer based on uniformly sized functionalized poly(glycidyl methacrylate) microspheres has been synthesized in aqueous solution using the surface imprinting technique. The microspheres were modified with hydroxyl ethyl methacrylate to allow for the introduction of polymerizable double bonds, with β‐cyclodextrin and acrylamide being grafted onto the surface as functional monomers. The selective recognition properties of the resulting molecularly imprinted polymers (MIPs) were investigated by HPLC. Various factors were also investigated in terms of their influence on the retention behaviors of the imprinted polymers, including the pH and salt concentration of the mobile phase. The binding capability properties of the MIPs were evaluated, and the PGMA/EDMA‐MIPs showed a high adsorption capacity for lysozyme. Furthermore, this MIP was used to separate and enrich lysozyme from egg whites. The results revealed that the lysozyme surface‐modified MIP could be used to efficiently separate and purify lysozyme from egg whites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Several molecularly imprinted polymers (MIPs) for the retention of 4,6-dimethyldibenzothiophene (4,6-DMDBT) were prepared. The first was a polymer prepared non-covalently with methacrylic acid and ethylene glycol dimethacrylate polymerized in the presence of 4,6-DMDBT. After extraction of 4,6-DMDBT, the selectivity of the imprinted polymer was evaluated by HPLC and compared to a non-imprinted control polymer prepared without 4,6-DMDBT. The imprinted polymer retained 4,6-DMDBT slightly longer than the control polymer. The second polymer was prepared using nickel (II)-methacryloylhistidinedihydrate monomer which was combined with 4,6-DMDBT, and polymerized with ethylene glycol dimethacrylate. This is a novel use of this monomer for retention of sulfur-containing organic compounds. Selectivity for 4,6-DMDBT was much greater in this polymer compared to the first, and retention in acetonitrile was more than three times greater on the imprinted polymer compared to a control polymer. Results indicate the potential use of this novel MIP for the removal of organosulfur compounds from fuel.
Figure
Chromatograms of a solution of acetone and 10 ppm 4,6-DMDBT in acetonitrile, evaluated on a non-imprinted control (dashed line) and imprinted test (solid line) polymers. Peak at 1.5 min on control column are acetone and 4,6-DMDBT. Peak at 1.5 min on test column is acetone and at 2.5 min is 4,6-DMDBT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号