首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The motivation to examine physical events at even smaller size scale arises from the development of use-specific materials where information transfer from one micro- or macro-element to another could be pre-assigned. There is the growing belief that the cumulated macroscopic experiences could be related to those at the lower size scales. Otherwise, there serves little purpose to examine material behavior at the different scale levels. Size scale, however, is intimately associated with time, not to mention temperature. As the size and time scales are shifted, different physical events may be identified. Dislocations with the movements of atoms, shear and rotation of clusters of molecules with inhomogeneity of polycrystals; and yielding/fracture with bulk properties of continuum specimens. Piecemeal results at the different scale levels are vulnerable to the possibility that they may be incompatible. The attention should therefore be focused on a single formulation that has the characteristics of multiscaling in size and time. The fact that the task may be overwhelmingly difficult cannot be used as an excuse for ignoring the fundamental aspects of the problem.Local nonlinearity is smeared into a small zone ahead of the crack. A “restrain stress” is introduced to also account for cracking at the meso-scale.The major emphasis is placed on developing a model that could exhibit the evolution characteristics of change in cracking behavior due to size and speed. Material inhomogeneity is assumed to favor self-similar crack growth although this may not always be the case. For relatively high restrain stress, the possible nucleation of micro-, meso- and macro-crack can be distinguished near the crack tip region. This distinction quickly disappears after a small distance after which scaling is no longer possible. This character prevails for Mode I and II cracking at different speeds. Special efforts are made to confine discussions within the framework of assumed conditions. To be kept in mind are the words of Isaac Newton in the Fourth Regula Philosophandi:
Men are often led into error by the love of simplicity which disposes us to reduce things to few principles, and to conceive a greater simplicity in nature than there really isWe may learn something of the way in which nature operates from fact and observation; but if we conclude that it operates in such a manner, only because to our understanding that operates to be the best and simplest manner, we shall always go wrong.”––Isaac Newton

Article Outline

1. Introduction
2. Elastodynamic equations and moving coordinates
3. Moving crack with restrain stress zone
3.1. Mode I crack
3.2. Mode II crack
4. Strain energy density function
4.1. Mode I
4.2. Mode II
5. Conclusions
Acknowledgements
References

1. Introduction

Even though experimental observations could reveal atomic scale events, in principle, analytical predictions of atomic movements fall short of expectation by a wide margin. Classical dislocation models have shown to be inadequate by large scale computational schemes such as embedded atoms and molecular dynamics. Lacking in particular is a connection between interatomic (10−8 cm) processes and behavior on mesoscopic scale (10−4 cm) [1]. Relating microstructure entities to macroscopic properties may represent too wide of a gap. A finer scale range may be needed to understand the underlying physics. Segmentation in terms of lineal dimensions of 10−6–10−5, 10−5–10−3 and 10−3–10−2 cm may be required. They are referred to, respectively, as the micro-, meso- and macro-scale. Even though the atomistic simulation approach has gained wide acceptance in recent times, continuum mechanics remains as a power tool for modeling material behavior. Validity of the discrete and continuum approach at the different length scales has been discussed in [2 and 3].Material microstructure inhomogeneities such as lattice configurations, phase topologies, grain sizes, etc. suggest an uneven distribution of stored energy per unit volume. The size of the unit volume could be selected arbitrarily such as micro-, meso- or macroscopic. When the localized energy concentration level overcomes the microstructure integrity, a change of microstructure morphology could take place. This can be accompanied by a corresponding redistribution of the energy in the system. A unique correspondence between the material microstructure and energy density function is thus assumed [4]. Effects of material structure can be reflected by continuum mechanics in the constitutive relations as in [5 and 6] for piezoelectric materials.In what follows, the energy density packed in a narrow region of prospective crack nucleation sites, the width of this region will be used as a characteristic length parameter for analyzing the behavior of moving cracks in materials at the atomic, micro-, meso- and macroscopic scale level. Nonlinearity is confined to a zone local to the crack tip. The degree of nonlinearity can be adjusted by using two parameters (σ0,ℓ) or (τ0,ℓ) where σ0 and τ0 are referred to, respectively, as the stresses of “restraint” owing to the normal and shear action over a local zone of length ℓ. The physical interpretation of σ0 and τ0 should be distinguished from the “cohesive stress” and “yield stress” initiated by Barenblatt and Dugdale although the mathematics may be similar. The former has been regarded as intrinsic to the material microstructure (or interatomic force) while the latter is triggered by macroscopic external loading. Strictly speaking, they are both affected by the material microstructure and loading. The difference is that their pre-dominance occurs at different scale levels. Henceforth, the term restrain stress will be adopted. For simplicity, the stresses σ0 and τ0 will be taken as constants over the segment ℓ and they apply to the meso-scale range as well.

2. Elastodynamic equations and moving coordinates

Navier’s equation of motion is given by(1)in which u and f are displacement and body force vector, respectively. Let the body force equal to zero, and introduce dilatational displacement potential φ(x,y,t) and the distortional displacement potential ψ(x,y,t) such that(2)u=φ+×ψThis yields two wave equations as(3)where 2 is the Laplacian in x and y while dot represents time differentiation. The dilatational and shear wave speeds are denoted by cd and cs, respectively.For a system of coordinates moving with velocity v in the x-direction,(4)ξ=xvt, η=ythe potential function φ(x,y,t) and ψ(x,y,t) can be simplified to(5)φ=φ(ξ,η), ψ=ψ(ξ,η)Eq. (3) can thus be rewritten as(6)in which(7)In view of Eqs. (7), φ and ψ would depend on (ξ,η) as(8)φ(ξ,η)=Re[Fd)], ψ(ξ,η)=Im[Gs)]The arguments ζj(j=d,s) are complex:(9)ζj=ξ+iαjη for j=d,sThe stress and displacement components in terms of φ and ψ are given as(10)uy(ξ,η)=−Im[αdFd)+Gs)]The stresses are(11)σxy(ξ,η)=−μ Im[2αdFd)+(1+αs2)Gs)]σxx(ξ,η)=μ Re[(1−αs2+2αd2)Fd)+2αsGs)]σyy(ξ,η)=−μ Re[(1+αs2)Fd)+2αsGs)]with μ being the shear modulus of elasticity.

3. Moving crack with restrain stress zone

The local stress zone is introduced to represent nonlinearity; it can be normal or shear depending on whether the crack is under Mode I or Mode II loading. For Mode I, a uniform stress σ is applied at infinity while τ is for Mode II. The corresponding stress in the local zone of length ℓ are σ0 are τ0. They are shown in Fig. 1 for Mode I and Fig. 2 for Mode II. Assumed are the conditions in the Yoffé crack model. What occurs as positive at the leading crack edge, the negative is assumed to prevail at the trailing edge.  相似文献   

2.
The stress dependencies of the steady-state viscosity η and, particularly, that of the steady-state elastic compliance J e of various linear isotactic polypropylenes (PP) and one long-chain branched PP are investigated using creep-recovery tests. The creep stresses applied range from 2 to 10,000 Pa. In order to discuss the stress-dependent viscosity η and elastic compliance J e with respect to the influence of the weight average molar mass M w and the polydispersity factor M w/M n the PP are characterized by SEC–MALLS. For the linear PP, linear steady-state elastic compliances Je0J_{\rm e}^0 in the range of 10 − 5–10 − 3 Pa − 1 are obtained depending on the molar mass distribution. Je0J_{\rm e}^0 of the LCB-PP is distinctly higher and comes to lie at around 10 − 2 Pa − 1. Je0J_{\rm e}^0 is found to be independent of M w but strongly dependent on polydispersity. η and J e decrease with increasing stress. For the linear PP, J e as a function of the stress τ is temperature independent. The higher M w/M n the stronger is the shear thinning of η and the more pronounced is the stress dependence of J e. For the LCB-PP, the strongest stress dependence of η and J e is observed. Furthermore, for all PP J e reacts more sensitively to an increasing stress than η. A qualitative explanation for the stronger stress dependence of J e compared to η is given by analyzing the contribution of long relaxation times to the viscosity and elasticity.  相似文献   

3.
B. R. Seth 《Rheologica Acta》1974,13(3):395-399
Summary One of the main problems in Rheology is the determination of the yield condition for which no satisfactory form seems to exist. If a start is made with the stress tensor field, one soon runs into a number of difficulties. It is therefore better to deal with the geometry of the field. The change from elastic to plastic deformation can be interpreted as a mapping of one space into another, and the yield as an asymptotic sub-space. If the elastic strain field ise ij , whose invariants areJ 1,J 2,J 3, then an asymptotic behaviour may be represented by the existence of a functional relationf(J 1, J2,J 3) = 0, between theJ's, which are independent of one another in the normal part of the field.This does not fix the nature of the functionf, for which we can invoke the additional geometric condition that yielding can result from infinite contraction or expansion of a macro-element. Thus theJacobian of the mapping must take on the singular values zero or infinite. These concepts give rise to the yield condition in the strain tensor field in the form 8J 3 – 4J 2 + 2J 1 1.If generalized measure of strain is used, which is necessary for creep problems, this takes the formn 3 J 3n 2 J 2 +nJ 1 1.n being a real constant, which is equal to 2 for theAlmansi measure. These conditions do not depend on either the isotropicity or homogeneity of the field, and hence should be used for all types of yield conditions.  相似文献   

4.
We study the problem of asymptotics of unbounded solutions of differential equations of the form y″ = α0 p(t)ϕ(y), where α0 ∈ {−1, 1}, p: [a, ω[→]0, +∞[, −∞ < a < ω ≤ +∞, is a continuous function, and ϕ: [y 0, +∞[→]0, +∞[ is a twice continuously differentiable function close to a power function in a certain sense.__________Translated from Neliniini Kolyvannya, Vol. 8, No. 1, pp. 18–28, January–March, 2005.  相似文献   

5.
The modified strip-yield model based on the Dugdale model and two-dimensional approximate weight function method were utilized to evaluate the effect of in-plane constraint, transverse stress, on the fatigue crack closure. The plastic zone sizes and the crack opening stresses considering transverse stress were calculated for four specimens: single edge-notched tension (SENT) specimen, single edge-notched bend (SENB) specimen, center-cracked tension (CCT) specimen, double edge-notched tension (DENT) specimen under uniaxial loading. And the crack opening behavior of the center-cracked specimen under biaxial loading was also evaluated. Normalized crack opening stresses σopmax for four specimens were successfully described by the normalized plastic zone parameter Δωrev considering transverse stress, where Δωrev and ω are the size of the reversed plastic zone at the moment of first crack tip closure and the size of the forward plastic zone for maximum stress, respectively. The normalized plastic zone parameter with transverse stress also was satisfactorily correlated with the behavior of crack closure for CCT specimen under biaxial loading.  相似文献   

6.
The purpose of this study is to investigate the accuracy of the least squares method for finding the in-plane stress intensity factorsK I andK II using thermoelastic data from isotropic materials. To fully understand the idealized condition ofK I andK II calculated from thermoelastic experiments, the total stress field calculated from finite element analysis is used to take the place of data obtained from real thermoelastic experiments. In the finite element analysis, theJ-integral is also calculated to compare with (K I 2 +K II 2 )/E evaluated by the least squares method. The stress fields near the crack tip are dominated by the two stress intensity factors; however, the edge effect will cause inaccuracy of the thermoelastic data near the crack tip. Furthermore, the scan area of thermoelastic experiments cannot be too small. Therefore, we suggest that three or four terms of stress function be included in the least squares method for evaluating stress intensity factors via the thermoelastic technique. In the idealized condition, the error can be smaller than 3 percent from our numerical simulations. If only ther –1/2 term (K I andK II ) is included in the least squares method, even in the idealized case the error can be up to 20 percent.  相似文献   

7.
We consider a Mode III lattice with an interface layer where the dynamic crack growth is caused by a localised sinusoidal wave. In the wave–fracture scenario, the ‘feeding wave’ (here also called the knife wave) delivers energy to the moving crack front, while the dissipative waves carry a part of this energy away from the front. The questions addressed here are:
• What are the conditions of existence of the localised knife wave?
• What is the lower bound of the amplitude of the feeding wave, which supports the crack propagation, for a given deformational fracture criterion?
• How does the crack speed depend on the amplitude of the feeding wave?
• What are the dissipative waves? How much energy is irradiated by these waves and what is the total dissipation?
• What are the conditions of existence of the steady-state regime for the propagating crack?
We consider analytically two established regimes: the steady-state regime, where the motion of neighbouring masses (along the interface) differs only by a constant shift in time, and an alternating-strain regime, where the corresponding amplitudes differ by sign. We also present the numerical simulation results for a model of a high-contrast interface structure. Along with the energy of the feeding and dissipative waves, an energy radiated to the bulk of the lattice is identified.
Keywords: A. Dynamic fracture; A. Vibrations; B. Inhomogeneous material; B. Supersonic crack; C. Integral transforms  相似文献   

8.
In determining structure–property relations for plasticity at different size scales, it is desired to bridge concepts from the continuum to the atom. This raises many questions related to volume averaging, appropriate length scales of focus for an analysis, and postulates in continuum mechanics. In a preliminary effort to evaluate bridging size scales and continuum concepts with descritized phenomena, simple shear molecular dynamics simulations using the Embedded Atom Method (EAM) potentials were performed on single crystals. In order to help evaluate the continuum quantities related to the kinematic and thermodynamic force variables, finite element simulations (with different material models) and macroscale experiments were also performed. In this scoping study, various parametric effects on the stress state and kinematics have been quantified. The parameters included the following: crystal orientation (single slip, double slip, quadruple slip, octal slip), temperature (300 and 500 K), applied strain rate (106–1012 s−1), specimen size (10 atoms to 2 μm), specimen aspect ratio size (1:8–8:1), deformation path (compression, tension, simple shear, and torsion), and material (nickel, aluminum, and copper). Although many conclusions can be drawn from this work, which has provided fodder for more studies, several major conclusions can be drawn.
• The yield stress is a function of a size scale parameter (volume-per-surface area) that was determined from atomistic simulations coupled with experiments. As the size decreases, the yield stress increases.
• Although the thermodynamic force (stress) varies at different size scales, the kinematics of deformation appears to be very similar based on atomistic simulations, finite element simulations, and physical experiments.
Atomistic simulations, that inherently include extreme strain rates and size scales, give results that agree with the phenomenological attributes of plasticity observed in macroscale experiments. These include strain rate dependence of the flow stress into a rate independent regime; approximate Schmid type behavior; size scale dependence on the flow stress, and kinematic behavior of large deformation plasticity.  相似文献   

9.
The problem of a center-cracked strip subjected to uniform remote anti-plane shear stress is transformed to a problem in a hodograph plane which is solved exactly by Mellin transform and Wiener-Hopf technique. The material of the strip satisfies a pure power hardening stress strain relation and the results are valid for both deformation and flow theories of placticity. Numerical values are given for the crack opening displacement δ and Rice's path independent J integral for several values of the power hardening exponent n and crack width to strip width ratios. Approximate asymptotic formulas are presented for J and δ for large n.  相似文献   

10.
A turbine blade is modelled as a uniform isotropic prismatic beam of general cross-section and “setting angle” rotating about one end, and is analysed according to the linear theory of elasticity. A semi-inverse solution is presented which reduces the three-dimensional problem to one of two dimensions, and explicit stress and strain components given for the mathematically amenable elliptic cross-section. As expected, the planar stresses σx,σy, and τxy arising from the two-dimensional problem are found to be small. For the general section, the theory predicts small curvature of the blade centre line, and a twisting moment which tends to reduce the “angle of set”.  相似文献   

11.
The initial boundary-value linear stability problem for small localised axisymmetric disturbances in a homogeneous elastic wave guide, with the free upper surface and the lower surface being rigidly attached to a half-space, is formally solved by applying the Laplace transform in time and the Hankel transforms of zero and first orders in space. An asymptotic evaluation of the solution, expressed as a sum of inverse Laplace-Hankel integrals, is carried out by using the approach of the mathematical formalism of absolute and convective instabilities. It is shown that the dispersion-relation function of the problem D0 (κ, ω), where the Hankel parameter κ is substituted by a wave number (and the Fourier parameter) κ, coincides with the dispersion-relation function D0 (k, ω) for two-dimensional (2-D) disturbances in a homogeneous wave guide, where ω is the frequency (and the Laplace parameter) in both cases. An analysis for localised 2-D disturbances in a homogeneous wave guide is then applied. We obtain asymptotic expressions for wave packets, triggered by axisymmetric perturbations localised in space and finite in time, as well as for responses to axisymmetric sources localised in space, with the time dependence satisfying eiω0t + O(e−εt) for t → ∞, where Im ω0 = 0, ε > 0, and t denotes time, i.e. for signalling with frequency ω0. We demonstrate that, for certain combinations of physical parameters, axisymmetric wave packets with an algebraic temporal decay and axisymmetric signalling with an algebraic temporal growth, as √t, i.e., axisymmetric temporal resonances, are present in a neutrally stable homogeneous wave guide. The set of physically relevant wave guides having axisymmetric resonances is shown to be fairly wide. Furthermore, since an axisymmetric part of any source is L2-orthogonal to its non-axisymmetric part, a 3-D signalling with a non-vanishing axisymmetric component at an axisymmetric resonant frequency will generally grow algebraically in time. These results support our hypothesis concerning a possible resonant triggering mechanism of certain earthquakes, see Brevdo, 1998, J. Elasticity, 49, 201–237.  相似文献   

12.
The singularity dominated zones for straight as well as curved cracks propagating in finite size specimens were determined experimentally by using the optical method of dynamic photoelasticity using the near-field stress equations. Experimental data was carefully analyzed using improved numerical schemes to get the complete stress field around the propagating crack. This stress field was critically examined to evaluate the size of singularity dominated zones for cracks propagating in straight as well as curved paths. For this purpose, the exact solution was compared with the singular solution using stress components σx, σy, τxy and the maximum shear stress τmax as a criterion respectively. For straight cracks where the stress field is symmetric about the crack path, the singularity dominated zones can be determined by using any one of the stresses. However, for a curved crack, the zones were unsymmetric. This study shows that σy, the crack opening stress, yields the best result for characterizing the singularity dominated zone around a running crack tip.  相似文献   

13.
Summary The rheological behaviour of aqueous solutions of Separan AP-30 and Polyox WSR-301 in a concentration range of 10–10000 wppm is investigated by means of a cone-and-plate rheogoniometer. The relation between the shear stress and the shear rate is for lower shear rates characterized by a timet 0, which is concentration dependent. Both polymers show for 4000 s–1 < < 10000 s–1 a behaviour similar to that of a Bingham material, characterized by a dynamic viscosity 0 and an apparent yield stress 0, which also depend on the concentration. The inertial forces are measured for water and some other Newtonian liquids. An explanation is given why the theoretical model developed for these forces does not match the experimental values; the shape of the liquid surface is shear rate dependent. To obtain the first normal stress difference, we have to correct for these inertial forces, the surface tension and the buoyancy. The normal forces, measured for Separan AP-30, appear to be a linear function of the shear rate for 350 s–1 < < 3300 s–1.
Zusammenfassung Das rheologische Verhalten wäßriger Polymerlösungen von Separan AP-30 und Polyox WSR-301 wird in einem Konzentrationsgebiet von 10–10000 wppm in einem Kegel-Platte-Rheogoniometer untersucht. Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit wird für niedrige Schergeschwindigkeiten durch eine konzentrationsabhängige Zeitt 0 gekennzeichnet. Für Schergeschwindigkeiten 4000 s–1 < < 10000 s–1 zeigen beide Polymere ein genähert binghamsches Verhalten, gekennzeichnet durch eine dynamische Viskosität 0 und eine scheinbare Fließgrenze 0, welche ebenfalls konzentrationsabhängig sind. Die Trägheitskräfte werden für Wasser und einige newtonsche Öle bestimmt. Die Abweichung der experimentellen Ergebnisse vom theoretischen Modell wird durch die Abhängigkeit der Gestalt der Flüssigkeitsoberfläche von der Schergeschwindigkeit erklärt. Um die Werte der ersten Normalspannungsdifferenz zu erhalten, muß man bezüglich der Trägheitskräfte, der Oberflächenspannung und der Auftriebskräfte korrigieren. Die Normalspannungen für Separan AP-30, gemessen für 350 s–1 < < 3300 s–1, zeigen eine lineare Abhängigkeit von der Schergeschwindigkeit.

c concentration (wppm) - g acceleration of gravity (ms–2) - K force (N) - K b buoyant force (N) - K c force, acting on the cone (N) - K 0 dimensional constant def. by eq. [24] (N) - K s force, def. by eq. [22] (N) - M dimensional constant def. by eq. [24] (Ns) - P s pressure def. by eq. [17] (Nm–2) - P 0 average pressure in the liquid atr = 0 (Nm–2) - P R average pressure in the liquid atr = R (Nm–2) - r 1,r 2 radii of curved liquid surface (m) - R platen radius (m) - R w radius of wetted platen area (m) - S x standard deviation ofx - t 0 characteristic time def. by eq. [1] (s) - T temperature (°C) - V volume of the submerged part of the cone (m3) - v tangential velocity of liquid (ms–1) - x distance (m) - angle (rad) - 0 cone angle (rad) - calibration constant (Nm–3) - shear rate (s–1) - dynamic viscosity (mPa · s) - 0 viscosity def. by eq. [1] (mPa · s) - contact angle (rad) - density (kgm–3) - static surface tension (Nm–1) - shear stress (Nm–2) - 0 yield stress def. by eq. [1] (Nm–2) - c, p angular velocity (c = cone,p = plate) (s–1) With 8 figures and 3 tables  相似文献   

14.
15.
The fatigue crack growth characteristics of CrlMo steel have been investigated at 861 K over the R-ratio range 0.1–0.7 utilising a dwell time of 10 min. at maximum load. All tests were conducted under load control in a laboratory air environment. It was established that the R-ratio significantly affected the fatigue crack extension behaviour inasmuch that with increasing R-ratio, the critical ΔK level for the onset of creep fatigue interactive growth, ΔKIG, decreased from 20 to 7 MPa√m and the threshold stress intensity, ΔKth, decreased from 9 to about 3 MPa√m. At intermediate ΔK levels, i.e. between ΔKth and ΔKIG, the fatigue crack extension rates, for all R-ratio values, resided on or slightly below the CTOD line, which represents the upper bound for contrnuum controlled fatigue crack growth. Creep fatigue interactive growth was typified by crack extension rates that reside above the CTOD line with a ΔKIG dependence; the attainment of some critical creep condition or crack linkage condition which causes the abrupt change in crack extension behaviour at ΔKIG; and crack extension occurs almost exclusively in an intergranular manner. The R-ratio and ΔKIG followed a linear relation. A literature review concerning the effect of temperature on the threshold fatigue crack growth characteristics of low alloy ferritic steels demonstrated powerful effects of temperature; the magnitude of these effects, however, were dependent upon the testing temperature regime and R-ratio level. The effect of R-ratio on ΔKth was greatest at temperatures >400°C, significant at ambient temperatures and least in the temperature range 90°C to <300°C. The relationship between temperature and ΔKth, at a given R-ratio, exhibited a through and a minimum ΔKth value was observed in the temperature range 200–250°C. The magnitude of the temperature effects on ΔKth decreased with increasing R-ratio. Such effects of temperature and R-ratio on ΔKth was reasonably explained in terms of crack closure effects. Finally, the present elevated temperature fatigue crack growth data exhibited massive crack extension enhancement values when compared to ambient near-threshold fatigue crack growth data for CrlMo steel. Such large enhancement values were the combined effects of temperature (environment) and frequency.  相似文献   

16.
We investigate the propagation of elastic waves through an elastic medium submitted to an angular rotation Ω. Wave propagation is shown to be directly related to the Kibel number Ki=ω/Ω, where ω is the wave frequency. Two dispersive waves W1 and W2 are obtained which tend to the classical dilatational and shear waves, respectively, when Ki tends to infinity. Wave W1 shows a cutoff frequency ωc=Ω below which it does not propagate. The case of small angular rotation Ω is also studied. The corrections to be introduced to dilatational and shear waves are then shown to be of order O(Ki−1).  相似文献   

17.
Compaction is an important component of soil degradation. In this regard, the pre-compaction stress (σpc) concept is considered useful in mechanized agriculture nowadays. When the external forces exceed the internal strength (σpc) of soil, soil structure and soil physical quality will deteriorate. This concept was introduced at first for confined consolidation of non-structured, homogenized and saturated subsoils in civil engineering, though it is also suitable for agricultural conditions where the topsoil and subsoil are considered and both are often structured, heterogeneous and unsaturated. The best method for predicting σpc is by the plate sinkage test (PST) in the field, but it is expensive and time-consuming. This study was conducted to find an alternative laboratory method besides the confined compaction test (CCT) for predicting σpc. The CCT may not be a good method, especially at higher water contents, and for soils with low organic matter content, because of low sharpness of the critical region on the stress–strain curves. The study was performed on five soil types with a range of soil textures and organic matter content from central Iran using three loading types and three pF (i.e. Log [soil matric suction in cm]) values of 2.3, 2.7 and 2.9 with two replicates. Loading types consisted of CCT, the semi-confined compaction test (SCCT) and the kneading compaction test (KCT) at three maximum (or pre-compaction) stresses of 200, 400 and 600 kPa. The experiment was a completely randomized factorial design. The aim was to determine how accurately each loading type test could predict σpc of soil pre-compacted by one of the other methods. The applied combinations of CCT–SCCT, SCCT–CCT and KCT–CCT mean that the soil was pre-compacted by the first loading type and evaluated by the second one. The results showed that σpc and the sharpness of the σpc region were significantly affected by loading types as well as the soil conditions. The sharpest σpc region was observed in SCCT and the least sharp in CCT with the overall order being CCT–SCCT > SCCT–CCT > KCT–CCT. The sharpness of the σpc region was reduced for the soil samples with higher water content and coarser texture. Regardless of the soil and loading conditions, the prediction by SCCT was consistently more accurate than by CCT. The prediction of σpc by SCCT was more precise in comparison with CCT especially at higher stresses and soil water contents. However, the prediction of σpc by SCCT was very accurate at pF values of 2.7 and 2.9, and with low σpc values, when compared with the actual values of the σpc. For the clay soil at a pF value of 2.3, no pre-compaction region (i.e. zero σpc) could be determined by CCT at a maximum axial stress of 600 kPa. This was because of the incompressibility of soil water at this near-saturated soil condition at high stress. However, the sharpness of the critical region in SCCT was high enough to predict σpc satisfactorily. There was no significant difference between the combinations of SCCT–CCT and KCT–CCT in predicting σpc. The SCCT is a compromise method that lies between CCT and PST. SCCT has the advantage of using a limited and definite soil volume that can be modeled as a soil element. Marginal effects of disturbance caused by coring/sampling as well as pre-test sample preparation seem to have minor effects on the stress–strain curve determined by SCCT in comparison with CCT. Moreover, the soil volume needed for this test is the same as for CCT.  相似文献   

18.
This work studies the asymptotic stress and displacement fields near the tip of a stationary crack in an elastic–plastic nonhomogeneous material with the emphasis on the effect of material nonhomogeneities on the dominance of the crack tip field. While the HRR singular field still prevails near the crack tip if the material properties are continuous and piecewise continuously differentiable, a simple asymptotic analysis shows that the size of the HRR dominance zone decreases with increasing magnitude of material property gradients. The HRR field dominates at points that satisfy |α−1 ∂α/∂xδ|1/r, |α−12α/(∂xδxγ)|1/r2, |n−1n/∂xδ|1/[r|ln(r/A)|] and |n−12n/(∂xδxγ)|1/[r2|ln(r/A)|], in addition to other general requirements for asymptotic solutions, where α is a material property in the Ramberg–Osgood model, n is the strain hardening exponent, r is the distance from the crack tip, xδ are Cartesian coordinates, and A is a length parameter. For linear hardening materials, the crack tip field dominates at points that satisfy |Etan−1Etan/∂xδ|1/r, |Etan−12Etan/(∂xδxγ)|1/r2, |E−1E/∂xδ|1/r, and |E−12E/(∂xδxγ)|1/r2, where Etan is the tangent modulus and E is Young’s modulus.  相似文献   

19.
Summary Further investigation of subinterface cracks in bimaterial solids is presented. The traction method is proposed permitting easy calculation of the stress intensity factors of the cracks. The elastic T-terms of the cracks are determined. The J 1 and J 2 integrals are analyzed for a contour enclosing all the cracks in the global coordinate system x,y, where the x-axis is parallel to the interface. Numerical examples are given, and the results are presented for two kinds of material combinations, Cu/Al2O3 and Ni/MgO. Accepted for publication 24 November 1996  相似文献   

20.
Interaction of vehicle and terrain results from 10 years research at IKK   总被引:4,自引:0,他引:4  
The IKK research program comprises:
• experimental evaluation of terrain data and formulation of analytical models for soil properties
• development of models for the different soil-wheel interactions
• development of a highly sophisticated model, ORIS, for off-road interactive simulation of the driver-vehicle-terrain system and the utilization for vehicle development and mission optimization
• development of finite element methods, e.g. VENUS, and their utilization for multiple terramechanical problems.
With these achievements, the team of scientists of the Institute of Automotive Engineering of the University of the Federal Armed Forces, Hamburg (IKK) could contribute essentially to the state of the art.It is the nature of scientific development that problems are recognized to be important and treated by several institutions in the world often at the same time. Also, in the case of the IKK research program, some problems may have been investigated in parallel by others. This indicates the actuality of the research program, and gives the chance for discussion and cooperation between the different scientific groups in the world, to ensure the dissemination of new pieces of knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号