首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Head-related transfer functions (HRTFs) for human subjects in anechoic space were modeled with modified phase spectra, including minimum-phase-plus-delay, linear-phase, and reversed-phase-plus-delay functions. The overall (wide-band) interaural time delay (ITD) for the modeled HRTFs was made consistent with that of the empirical HRTFs by setting the position-dependent, frequency-independent delay in the HRTF for the lagging ear. Signal analysis of the minimum-phase-plus-delay reconstructions indicated that model HRTFs deviate from empirical HRTF measurements maximally for contralateral azimuths and low elevations. Subjects assessed the perceptual validity of the model HRTFs in a four-interval, two-alternative, forced-choice discrimination paradigm. Results indicate that monaural discrimination performance of subjects was at chance for all three types of HRTF models. Binaural discrimination performance was at chance for the linear-phase HRTFs, was above chance for some locations for the minimum-phase-plus-delay HRTFs, and was above chance for all tested locations for the reversed-phase-plus-delay HRTFs. An analysis of low-frequency timing information showed that all of these results are consistent with efficient use of interaural time differences in the low-frequency components of the stimulus waveforms. It is concluded that listeners are insensitive to HRTF phase spectra as long as the overall ITD of the low-frequency components does not provide a reliable cue. In particular, the minimum-phase-plus-delay approximation to the HRTF phase spectrum is an adequate approximation as long as the low-frequency ITD is appropriate. These results and conclusions are all limited to the anechoic case when the HRTFs correspond to brief impulse responses limited to a few milliseconds.  相似文献   

2.
Infinite-impulse-response models of the head-related transfer function   总被引:4,自引:0,他引:4  
Head-related transfer functions (HRTFs) measured from human subjects were approximated using infinite-impulse-response (IIR) filter models. Models were restricted to rational transfer functions (plus simple delays) so that specific models are characterized by the locations of poles and zeros in the complex plane. The all-pole case (with no nontrivial zeros) is treated first using the theory of linear prediction. Then the general pole-zero model is derived using a weighted-least-squares (WLS) formulation of the modified least-squares problem proposed by Kalman (1958). Both estimation algorithms are based on solutions of sets of linear equations and result in efficient computational schemes to find low-order model HRTFs. The validity of each of these two low-order models was assessed in psychophysical experiments. Specifically, a four-interval, two-alternative, forced-choice paradigm was used to test the discriminability of virtual stimuli constructed from empirical and model HRTFs for corresponding locations. For these experiments, the stimuli were 80 ms, noise tokens generated from a wideband noise generator. Results show that sounds synthesized through model HRTFs were indistinguishable from sounds synthesized from original HRTF measurements for the majority of positions tested. The advantages of the techniques described here are the computational efficiencies achieved for low-order IIR models. Properties of the all-pole and pole-zero estimators are discussed in the context of low-order HRTF representations, and implications for basic and applied contexts are considered.  相似文献   

3.
A method to correct the measured head-related transfer functions (HRTFs) at low frequency was proposed. By analyzing the HRTFs from the spherical head model at low frequency, it is proved that below the frequency of 400 Hz, magnitude of HRTF is nearly constant and the phase is a linear function of frequency both for the far and near field. Therefore, if the HRTFs above 400 Hz are accurately measured by experiment, it is able to correct the HRTFs at low frequency by the theoretical model. The results of calculation and subjective experiment show that the feasibility of the proposed method.  相似文献   

4.
Head-related transfer functions (HRTFs) vary with individuals, and in practice, measuring HRTFs with high directional resolution for each individual is tiresome. Based on a basis functions representation of HRTFs, the present work proposes a method for recovering individual HRTFs from a small set of measurements. The HRTFs are represented by a combination of a small set of spatial basis functions (SBFs) with frequency- and individual-dependent weights. The SBFs are derived by applying spatial principal component analysis to a baseline HRTF dataset with high directional resolution. The individual weights for any subject outside the dataset are estimated from measurements at a few source directions, and then the HRTFs with high directional resolution are recovered by combining the SBFs and the individual weights. In an illustrative case, the SBFs derived from a baseline dataset that includes 20 subjects are used to recover the HRTF magnitudes for six subjects outside the baseline dataset. Results show that individual HRTF magnitudes can be recovered from measurements at 73 directions with a mean signal-to-distortion ratio of 19 dB. The proposed method is also applicable to recovering head-related impulse responses. The results of psychoacoustic experiments indicate that in most cases the recovered and measured HRTFs are indistinguishable.  相似文献   

5.
Head-related transfer functions(HRTFs) are the core of virtual auditory display and relevant applications. However,a standard method for HRTF measurements has not been established. This work examines the influence of different HRTF measurement methodologies on auditory perception. First, the diffusion-field equalization was proposed and applied to HRTFs of a single dummy head(KEMAR) from five different datasets. Then,the spectral deviations among the HRTFs were calculated and analyzed. Finally, a series of subjective listening experiments(including localization and discrimination experiments) were conducted. Results indicate the diffusion-field equalization is an effective pre-processing method which reduces the difference in HRTF magnitude spectra caused by different measurement methodologies. Moreover,the HRTFs from different measurement methodologies have similar localization performance below 12 kHz, whereas the inter-dataset differences in timbre are distinct leading to audible discrimination.  相似文献   

6.
钟小丽  徐秀 《声学学报》2018,43(1):83-90
头相关传输函数(HRTF)是虚拟听觉重放的核心·目前,HRTF的实验室测量缺乏统一的规范。本文研究了不同测量对HRTF的听觉影响。首先提出了扩散场均衡的预处理方法,并对来自5个不同数据库的KEMAR假人的HRTF数据进行了扩散场均衡;然后,采用谱差异评估了不同数据库HRTF测量的频谱差异;最后,采用HRTF合成的虚拟声信号开展了一系列的主观听音实验,包括定位实验和区分实验·结果表明,扩散场均衡是一种有效的HRTF预处理方法,可以减小不同测量对HRTF频谱的影响;不同测量基本上不影响HRTF在12 kHz以下的定位效果,但对音色的影响较大,从而导致听觉上的可区分.   相似文献   

7.
An efficient method for head-related transfer function (HRTF) measurement is presented. By applying the acoustical principle of reciprocity, one can swap the speaker and the microphone positions in the traditional (direct) HRTF measurement setup, that is, insert a microspeaker into the subject's ear and position several microphones around the subject, enabling simultaneous HRTF acquisition at all microphone positions. The setup used for reciprocal HRTF measurement is described, and the obtained HRTFs are compared with the analytical solution for a sound-hard sphere and with KEMAR manikin HRTF obtained by the direct method. The reciprocally measured sphere HRTF agrees well with the analytical solution. The reciprocally measured and the directly measured KEMAR HRTFs are not exactly identical but agree well in spectrum shape and feature positions. To evaluate if the observed differences are significant, an auditory localization model based on work by J. C. Middlebrooks [J. Acoust. Soc. Am. 92, 2607-2624 (1992)] was used to predict where a virtual sound source synthesized with the reciprocally measured HRTF would be localized if the directly measured HRTF were used for the localization. It was found that the predicted localization direction generally lies close to the measurement direction, indicating that the HRTFs obtained via the two methods are in good agreement.  相似文献   

8.
The paper proposes a hybrid compression method to resolve the storage problem of a large number of head-related transfer functions (HRTFs). First, each HRTF is approximated by a minimum-phase HRTF and an all pass filter whose group delay equals the interaural time delay (ITD). Second, principal component analysis is applied to the entire HRTF set to derive several basis functions, with a weight vector set defining the contribution of the basis functions to each HRTF. Third, the weight set is vector quantized with the designed codebook. At last, the ITD is curved surface fitted with a cosine series bivariate polynomial. As a result, the HRTF can be reconstructed from the basis functions, codebook indexes, and ITD polynomial coefficients. Simulation results reveal that the proposed method may reduce the data size greatly with similar reconstruction precision comparing with the principal component analysis method.  相似文献   

9.
赵童  谢菠荪  朱俊  梁林达 《声学学报》2023,48(1):215-224
远场头相关传输函数(HRTF)随声源方向、频率以及个体变化。完整HRTF的数据量很大,且测量或计算每个人的高方向分辨率HRTF是很困难的。本文提出一种从少量方向的测量或计算重构高方向分辨率HRTF的方法。基于HRTF张量分解,远场HRTF可分解为方向模态、频率模态和少量个体模态的张量组合。通过对已有的基线HRTF数据库进行统计分析,可得到与个体无关的方向模态矩阵和频率模态矩阵。而对于任何新的个体,只要少量方向的测量或计算HRTF即可估计出个体模态的变化,并重构出高方向分辨率的HRTF数据。对两个HRTF数据库的计算表明,采用11个个体模态即可表示超过98%的个体相关的HRTF能量变化,并从大约30个方向的测量或计算HRTF重构出高方向分辨率的HRTF幅度。心理声学实验验证了提出的方法。该方法可用于简化个性化HRTF的测量或计算。  相似文献   

10.
Direct measurements of individual head-related transfer functions (HRTFs) with a probe microphone at the eardrum are unpleasant, risky, and unreliable and therefore have not been widely used. Instead, the HRTFs are commonly measured from the blocked ear canal entrance, which excludes the effects of the individual ear canals and eardrums. This paper presents a method that allows obtaining individually correct magnitude frequency responses of HRTFs at the eardrum from pressure-velocity (PU) measurements at the ear canal entrance with a miniature PU sensor. The HRTFs of 25 test subjects with nine directions of sound incidence were estimated using real anechoic measurements and an energy-based estimation method. To validate the approach, measurements were also conducted with probe microphones near the eardrums as well as at blocked ear canal entrances. Comparisons between the different methods show that the method presented is a valid and reliable technique for obtaining magnitude frequency responses of HRTFs. The HRTF filters designed using the PU measurements are also shown to yield more correct frequency responses at the eardrum than the filters designed using measurements from the blocked ear canal entrance.  相似文献   

11.
As the basic data for virtual auditory technology, head-related transfer function (HRTF) has many applications in the areas of room acoustic modeling, spatial hearing and multimedia. How to individualize HRTF fast and effectively has become an opening problem at present. Based on the similarity and relativity of anthropometric structures, a hybrid HRTF customization algorithm, which has combined the method of principal component analysis (PCA), multiple linear regression (MLR) and database matching (DM), has been presented in this paper. The HRTFs selected by both the best match and the worst match have been applied into obtaining binaurally auralized sounds, which are then used for subjective listening experiments and the results are compared. For the area in the horizontal plane, the localization results have shown that the selection of HRTFs can enhance the localization accuracy and can also abate the problem of front-back confusion.  相似文献   

12.
In the context of binaural audio rendering, choosing the best head-related transfer function (HRTF) for an individual from large databases poses several problems. This study proposes a method to reduce the size of a given HRTF database. Participants, 45 in total, were asked to rate the quality of binaural synthesis for 46 HRTFs. The lack of reciprocity in the ratings was noted. Results were used to create a perceptually optimized HRTF subset which satisfied all participants' judgments. The subset was validated using localization tests on a separate group of subjects with results showing reduced errors when subjects were given their best choice, rather than their worst choice HRTF.  相似文献   

13.
余光正  谢菠荪  饶丹 《声学学报》2012,37(4):378-385
采用球形正十二面体声源及其空间定位系统,测量并建立了KEMAR人工头的近场头相关传输函数(HRTF)数据库。基于数据库分析了近场HRTF在频域和时域随声源距离变化的规律;讨论了用近场HRTF算得的双耳声级差(TLD)和双耳时间差(ITD)所包含的声源距离定位信息。结果表明,测量系统和所得数据具有较好的重复性和准确性,保留了1 kHz以下的低频定位信息。并且,近场HRTF幅度谱和ILD随声源距离的变化明显;用相关法算得2 kHz以下频段的ITD随声源距离略有变化。本文数据库及其分析结果将为声源距离定位的应用提供基础。   相似文献   

14.
To examine a simulation method for vertical sound localization, and to clarify which peaks and notches in head-related transfer functions (HRTFs) play a role as spectral cues, localization tests in the median plane were carried out using a parametric HRTF model, which is recomposed only of extracted spectral peaks and notches. The results show that the parametric HRTF recomposed using the first and second notches (N1 and N2) and the first peak (P1) provides almost the same localization accuracy as the measured HRTFs. Observations of the spectral peaks and notches indicate that N1 and N2 change remarkably as the source elevation changes, whereas P1 does not depend on the source elevation. In conclusion, N1 and N2 can be regarded as spectral cues, and the hearing system could utilize P1 as the reference information to analyze N1 and N2.  相似文献   

15.
In this article, compact representation of spatial variation of Head-Related Transfer Function (HRTF) or its corresponding inverse Fourier transform, namely Head-Related Impulse Response (HRIR) based on Principal Components Analysis (PCA), which is called the Spatial Principal Component Analysis (SPCA), is investigated, focusing on effect of domain selection. The SPCA was carried out for a database of HRTFs in all directions by selecting the domain as one of the HRIRs, the complex HRTFs, the frequency amplitudes of HRTFs, and log-amplitudes of HRTFs. In the latter two cases the minimum phase approximation was incorporated. Comparison of the accuracy in both time and frequency domains showed that the most compact representation is obtained by using the frequency amplitudes of HRTFs when the minimum phase approximation is acceptable, and the complex HRTFs bring about the most compact representation when the minimum phase approximation is not acceptable.  相似文献   

16.
The synthesis of individual virtual auditory space (VAS) is an important and challenging task in virtual reality. One of the key factors for individual VAS is to obtain a set of individual head related transfer functions (HRTFs). A customization method based on back-propagation (BP) artificial neural network (ANN) is proposed to obtain an individual HRTF without complex measurement. The inputs of the neural network are the anthropometric parameters chosen by correlation analysis and the outputs are the characteristic parameters of HRTFs together with the interaural time difference (ITD). Objective simulation experiments and subjective sound localization experiments are implemented to evaluate the performance of the proposed method. Experiments show that the estimated non-individual HRTF has small mean square error, and has similar perception effect to the corresponding one obtained from the database. Furthermore, the localization accuracy of personalized HRTF is increased compared to the non-individual HRTF.  相似文献   

17.
The present study measured the head-related transfer functions (HRTFs) of the Mongolian gerbil for various sound-source directions, and explored acoustical cues for sound localization that could be available to the animals. The HRTF exhibited spectral notches for frequencies above 25 kHz. The notch frequency varied systematically with source direction, and thereby characterized the source directions well. The frequency dependence of the acoustical axis, the direction for which the HRTF amplitude was maximal, was relatively irregular and inconsistent between ears and animals. The frequency-by-frequency plot of the interaural level difference (ILD) exhibited positive and negative peaks, with maximum values of 30 dB at around 30 kHz. The ILD peak frequency had a relatively irregular spatial distribution, implying a poor sound localization cue. The binaural acoustical axis (the direction with the maximum ILD magnitude) showed relatively orderly clustering around certain frequencies, the pattern being fairly consistent among animals. The interaural time differences (ITDs) were also measured and fell in a +/- 120 micros range. When two different animal postures were compared (i.e., the animal was standing on its hind legs and prone), small but consistent differences were found for the lower rear directions on the HRTF amplitudes, the ILDs, and the ITDs.  相似文献   

18.
The fidelity of reproducing free-field sounds using a virtual auditory display was investigated in two experiments. In the first experiment, listeners directly compared stimuli from an actual loudspeaker in the free field with those from small headphones placed in front of the ears. Headphone stimuli were filtered using head-related transfer functions (HRTFs), recorded while listeners were wearing the headphones, in order to reproduce the pressure signatures of the free-field sounds at the eardrum. Discriminability was investigated for six sound-source positions using broadband noise as a stimulus. The results show that the acoustic percepts of real and virtual sounds were identical. In the second experiment, discrimination between virtual sounds generated with measured and interpolated HRTFs was investigated. Interpolation was performed using HRTFs measured for loudspeaker positions with different spatial resolutions. Broadband noise bursts with flat and scrambled spectra were used as stimuli. The results indicate that, for a spatial resolution of about 6 degrees, the interpolation does not introduce audible cues. For resolutions of 20 degrees or more, the interpolation introduces audible cues related to timbre and position. For intermediate resolutions (10 degrees - 15 degrees) the data suggest that only timbre cues were used.  相似文献   

19.
Sound localization cues generally include interaural time difference, interaural intensity difference, and spectral cues. The purpose of this study is to investigate the important spectral cues involved in so-called head related transfer functions (HRTFs) using a combination of HRTF analyses and a virtual sound localization (VSL) experiment. Previous psychoacoustical and physiological studies have both suggested the existence of spectral modulation frequency (SMF) channels for analyzing spectral information (e.g., the spectral cues coded in HRTFs). SMFs are in a domain related to the Fourier transform of HRTFs. The relationship between various SMF regions and sound localization was tested here by filtering or enhancing HRTFs in the SMF domain under a series of conditions using a VSL experiment. Present results revealed that azimuth localization was not significantly affected by HRTF manipulation. Applying notch filters between 0.1 and 0.4 cyclesoctave or between 0.35 and 0.65 cyclesoctave resulted in significantly less accurate elevation responses at low elevations, while spectral enhancement in these two SMF regions did not produce a significant change in sound localization. Likewise, low-pass filtering at 2 cyclesoctave did not significantly influence localization accuracy, suggesting that the major cues for sound localization are in the SMF region below 2 cyclesoctave.  相似文献   

20.
Head-related transfer functions (HRTFs) describe the directional filtering of the incoming sound caused by the morphology of a listener’s head and pinnae. When an accurate model of a listener’s morphology exists, HRTFs can be calculated numerically with the boundary element method (BEM). However, the general recommendation to model the head and pinnae with at least six elements per wavelength renders the BEM as a time-consuming procedure when calculating HRTFs for the full audible frequency range. In this study, a mesh preprocessing algorithm is proposed, viz., a priori mesh grading, which reduces the computational costs in the HRTF calculation process significantly. The mesh grading algorithm deliberately violates the recommendation of at least six elements per wavelength in certain regions of the head and pinnae and varies the size of elements gradually according to an a priori defined grading function. The evaluation of the algorithm involved HRTFs calculated for various geometric objects including meshes of three human listeners and various grading functions. The numerical accuracy and the predicted sound-localization performance of calculated HRTFs were analyzed. A-priori mesh grading appeared to be suitable for the numerical calculation of HRTFs in the full audible frequency range and outperformed uniform meshes in terms of numerical errors, perception based predictions of sound-localization performance, and computational costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号