首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
采用NMR方法考察了室温和低温(-78~-60℃)下Pd2X2(dpm)2(X=NCO^-,CH3CO^-2,SCN^-和NO^-3,dpm=Ph2PCH2PPh2)与H2S在CD2Cl2或CDCl3中的反应。结果表明,在X=NCO^-和CH3CO^-2的情况下,H2S优先与这些Pd配合物的阴离子作用生成相应的共轭酸HX和Pd2(SH)2(dpm)2,后者在H2S存在下又进一步转化为Pd2(SH)  相似文献   

2.
合成了新型镧系四元混合阴离子配合物〖La(C6H5COO)2(NO3)(bipy)〗2,化学经验式为C24H18N3O76La,Mr=599.33,晶体属三斜晶系,P^-1空间群,晶胞参数:a=11.020(4),b=11.182(2),c=10.285(3)^°A,a=102.83(2),β=109.16(2),γ=82.23(3)°,Z=1,Dc=1.709g/cm^3,V=1164.7(6)  相似文献   

3.
测定了三元体系La(ClO4)3-OCBAAP-H2O在30℃时的溶解度.结果表明,该体系有一个新固相(不一致溶解化合物)La(OCBAAP)4(ClO4)3·6H2O形成.参考该体系溶度图确定合成条件,合成了系列化合物Ln(OCBAAP)4(ClO4)3·nH2O(Ln=La,n=6;Ln=Pr,Nd,Sm,Gd,Yb,n=2).通过化学分析、元素分析、TG-DTG、IR和密度对化合物进行了表征,计算了La(OCBAAP)4(ClO4)3热分解过程各阶段的表观活化能.  相似文献   

4.
采用NMR方法考察了室温和低温(-78~-60℃)下Pd2X2(dpm)2(X=NCO-,CH3CO,SCN-和NO,dpm=Ph2PCH2PPh2)与H2S在CD2Cl2或CDCl3中的反应。结果表明,在X=NCO-和CH3CO的情况下,H2S优先与这些Pd配合物的阴离子作用生成相应的共轭酸HX和Pd2(SH)2(dpm)2,后者在H2S存在下又进一步转化为Pd2(SH)2(dpm)2(μ-S);当X=SCN-和NO时,反应则生成结构可能为[Pd2(H)(SH)(μ-SH)(dpm)2]+的双核Pd配合物。  相似文献   

5.
报道了配合物Eu(XnP)3.3H2O「其中X=H,2-Cl,3-OH,4-Br,3-NO2,2-OCH3,2-CH3,2,4-二氯;P=2-(COO)C6H4CONHC6H5-^-,n=1,2」的制备,并用元素分析,红外光谱,电子反射光谱,热重分析进行了表征。  相似文献   

6.
Cu2I2(PPh3)3·MDF(Ph=C6H5,DMF=HCON(CH3)2是通过W2S4(S2CN-(CH2CH2OH)2)2,PPh3和CuI在CH2Cl2和DMF为溶剂,在室温条件下合成的晶体产物。其窨群为P21/C,晶胞参数:C57H52Cu2I2NOP3,α=15.863(5),b=19.619(7),c=18.232(4),A,β=109.53(2)°,V=5348(3)A^3,Z=  相似文献   

7.
RE[CH2(CH2)4CONC4H9]3(NO3)3(RE=La,Dy)的合成和晶体结构   总被引:1,自引:0,他引:1  
采用X-射线四园衍射仪测定了Dy「Ch2(CH2)4CONC4H9」3(NO3)3和La「CH2(CH2)4CONC4H3」3(NO3)3的晶体结构。两个配合物具有相似的结构,均属单斜晶系,空间群为P21/c。晶体参数:Dy「La」:a=1.8564(3)「1.8564(2)」nm,b=0.9769(2)「0.9834(1)」nm,c=2.1863(6)「2.20038(7)」nm,β=96.08  相似文献   

8.
利用不同溶剂合成并测定了希土三氯醋酸盐与α,a'-联吡啶(bipy)不同比例的配合物(I)La:bipy=1:1,[La(CCl3COO)3(bipy).H2O]2和(Ⅱ)Tb:bipy=1:2,Tb(CCl3COO)3(bipy)2.H2O,结构测定表明配合物(I)与(Ⅱ)均为三斜晶系,中心离子La(或Tb)具有配位数为8的畸变四方反棱柱多面体;但是配合物(I)形成具有对称中心的二聚体。  相似文献   

9.
采用半微量相平衡方法研究了LaCl_3·3H_2O-18C6-C_2H_5OH三元体系在25℃时的溶解度,测定了各饱和溶液的折光率。结果表明:该体系在25℃时形成了3种化学计量的配合物,组成分别为LaCl_3·18C6·3H_2O·2LaCl-3·18C6·6H_2O·C_2H_5OH及3LaCl_3·18C6·9H_2O·C_2H_5OH.考察了相平衡过程中水的行为,结果表明:无论在液相还是在固相中,H_2O/LaCl_3的摩尔比总是3:1.制备了固态配合物,用IR、DTG、TG与DSC研究了配合物的组成与性质。由DSC得到配合物不同分解步骤的焓变.  相似文献   

10.
研究了四元体系CsCl-LaCl3-HCl-H2O(25℃、「HCl」=13%(wt),23%(wt)和CsCl-LaCl3-HAc-H2O(30℃,「HAc」=42%(wt))的平衡态的溶度数据,并给出制了相应的溶度图,共得到了CsCl.LaCl3.4H2O、2CsCl.LaCl3.2H2O和3CsCl.LaCl3.3H2O3种化合物。对得到的新相进行了热分析,X射线粉末衍射及偏光性质的测定,依  相似文献   

11.
The bidentate sandwich ligand [Fe(eta 5-C5H(4)-1-C5H4N)2] has been prepared, structurally characterized and employed in the preparation of the novel supramolecular heterobimetallic metalla-macrocycles [Fe(eta 5-C5H(4)-1-C5H4N)2]Ag2(NO3)(2).1.5H2O, [Fe(eta 5-C5H(4)-1-C5H4N)2]Cu2(CH3COO)(4).3H2O and [Fe(eta 5-C5H(4)-1-C5H4N)2]Zn2Cl4.  相似文献   

12.
The reactions of neutral or cationic manganese carbonyl species towards the oxo-nitrosyl complex [Na(MeOH)[Mo(5)O(13)(OCH(3))(4)(NO)]](2-) have been investigated in various conditions. This system provides an unique opportunity for probing the basic reactions involved in the preparation of solid oxide-supported heterogeneous catalysts, that is, mobility of transition-metal species at the surface and dissolution-precipitation of the support. Under nitrogen and in the dark, the reaction of in situ generated fac-[Mn(CO)(3)](+) species with (nBu(4)N)(2)[Na(MeOH)-[Mo(5)O(13)(OMe)(4)(NO)]] in MeOH yields (nBu(4)N)(2)[Mn(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] at room temperature, while (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)] is obtained under reflux. The former transforms into the latter under reflux in methanol in the presence of sodium bromide; this involves the migration of the fac-[Mn(CO)(3)](+) moiety from a basal kappa(2)O coordination site to a lateral kappa(3)O site. Oxidation and decarbonylation of manganese carbonyl species as well as degradation of the oxonitrosyl starting material and reaggregation of oxo(methoxo)molybdenum fragments occur in non-deareated MeOH, and both (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)] and (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] as well as (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been obtained in this way. The rhenium analogue (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] has also been synthesized. The crystal structures of (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]], (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] and (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been determined.  相似文献   

13.
SYNTHESIS AND CRYSTAL STRUCTURE OF La(NO3)3(16—C—5)   总被引:1,自引:0,他引:1  
王瑞瑶  刘育 《结构化学》1991,10(2):162-166
<正> The title complex LaC11H22O14N3 (Mr = 559. 27) crystallizes in the monoclinic space group P21/c with a=14. 452(7) ,b=8. 260(2),c= 16. 641(8) A ,β= 90. 85(4)°, Z = 4, V=1986. 2(1) A3,Dc=1. 87g·cm-3, F(000) = 1112,μ(MoKa) = 22. 7cm-1. The final refinement converged with R=0. 036 and Rw = 0. 038 for 2996 observed independent reflectios. The average La-O(crown) bond length of 2. 683 A (2. 660-2. 701A)is shorter than that in La(NO3)3(15-C-5)(2. 694A).The distances between opposite O atoms (3. 47~4. 68A) indicate that the cavity of 16-C-5 in the complex is elliptic.  相似文献   

14.
Fourier transform infrared spectroscopy has been employed to investigate the N(CH3)3 adsorption, thermal stability, and photochemical reactions on powdered TiO2. N(CH3)3 molecules are adsorbed on TiO2 without dissociation at 35 degrees C and are completely desorbed from the surface at 300 degrees C in a vacuum. The CH3 rocking frequencies of N(CH3)3 on TiO2 are affected via the interaction between N(CH3)3 and TiO2 surface OH groups. In the presence of O2, adsorbed N(CH3)3 decomposes thermally at 230 degrees C and photochemically under UV irradiation. In the latter case with comparative (16)O2 and (18)O2 studies, CO2(g), NCO(a), HCOO(a), and surface species containing C=N or NH(x) functional groups are identified to be the photoreaction products or intermediates. In the presence of (18)O2, the main formate species formed is HC(16)O(18)O(a). As H2O is added to the photoreaction system, a larger percentage of adsorbed N(CH3)3 is consumed. However, in the presence of (18)O2 and H2O, the amount of HC(16)O(18)O(a) becomes relatively small, compared to HC(16)O(16)O(a). A mechanism is invoked to explain these results. Furthermore, based on the comparison of isotopic oxygens in the formate products obtained from CH3O(a) photooxidation in (16)O2 and (18)O2, it is concluded that the N(CH3)3 photooxidation does not generate CH3O(a) in which the oxygen belongs to TiO2.  相似文献   

15.
1 INTRODUCTION It was reported that the pyrazolopyrimidinone derivatives play a very important role in the bio- chemistry of living cell. Many potential drugs[1~3] and agrochemicals[4, 5] have been modeled on the compound, and the study on derivatives …  相似文献   

16.
Reaction of the amido complex (eta(5)-C(5)H(5))Re(NO)(PPh(3))(&Numl;H(2)) (2) and hexafluoroacetone gives the methyleneamido complex (eta(5)-C(5)H(5))Re(NO)(PPh(3))(&Numl;=C(CF(3))(2)) (3, 58%). Addition of TfOH to 3 yields the sigma-imine complex [(eta(5)-C(5)H(5))Re(NO)(PPh(3))(eta(1)-N(H)=C(CF(3))(2))](+)TfO(-) (4, 96%). Similar reactions of 2 with trifluoroacetaldehyde and then TfOH give the sigma-imine complex [(eta(5)-C(5)H(5))Re(NO)(PPh(3))(eta(1)-N(H)=C(CF(3))H)](+)TfO(-) (5, 78%) and sometimes small amounts of the corresponding pi-trifluoroacetaldehyde complex. Reaction of 5 and t-BuO(-)K(+) gives the methyleneamido complex (eta(5)-C(5)H(5))Re(NO)(PPh(3))(&Numl;=C(CF(3))H) (6, 82%). The IR and NMR properties of 3-6 are studied in detail. The (13)C NMR spectra show C=N signals (157-142 ppm) diagnostic of sigma-binding modes. No evidence is observed for pi isomers of 4 or 5. Analogous O=C(CF(3))X complexes give exclusively pi isomers, and rationales are discussed. Reactions of 3or 6 with MeOTf and heteroatom electrophiles are also described.  相似文献   

17.
The ferrocenic ammonium (Rp)- and (Sp)-[1-CH2NR(3-)-2-CH3-C5H3Fe-C5H5] iodide salts with R=CH3, C2H5, n-C3H7, n-C4H9, were synthesized starting from the (Rp)- and (Sp)-[1-CH2N(CH3)2-2-CH3-C5H3Fe-C5H5] amines obtained in their optically active forms through asymmetric cyclopalladation of [C5H5Fe-C5H4CH2N(CH3)2]. 1H NMR studies of these planar chiral 1,2-disubstituted ferrocenic ammonium iodide salts in the presence of the (Delta)-(tris(tetrachlorobenzenediolato)phosphate(V) anion), [(Delta)-Trisphat] support the formation of specific diastereomeric ion pairs. Such intermolecular interactions can be related to the self-assembly of the two-dimensional optically active compounds [[(Sp)-1-CH2N(n-C3H7)3-2-CH3-C5H3Fe-C5H5][Mn (Delta)-Cr(C2O4)3]] and [[(Rp)-1-CH2N(n-C3H7)3-2-CH3-C5H3Fe-C5H5][Mn (Lambda)-Cr(C2O4)3]] starting from the resolved (Rp)- and (Sp)-[1-CH2N(n-C3H7)3-2-CH3-C5H3Fe-C5H5]+ ion associated to the racemic anionic building block rac-[Cr(C2O4)3]3- and Mn2+. Both enantiomeric forms of the networks behave as ferromagnets with a Curie temperature of 5.7 K.  相似文献   

18.
Vanadium(III) and vanadium(V) complexes derived from the tris(2-thiolatoethyl)amine ligand [(NS3)3-] and the bis(2-thiolatoethyl)ether ligand [(OS2)2-] have been synthesized with the aim of investigating the potential of these vanadium sites to bind dinitrogen and activate its reduction. Evidence is presented for the transient existence of (V(NS3)(N2)V(NS3), and a series of mononuclear complexes containing hydrazine, hydrazide, imide, ammine, organic cyanide, and isocyanide ligands has been prepared and the chemistry of these complexes investigated. [V(NS3)O] (1) reacts with an excess of N2H4 to give, probably via the intermediates (V(NS3)(NNH2) (2a) and (V(NS3)(N2)V(NS3) (3), the V(III) adduct [V(NS3)(N2H4)] (4). If 1 is treated with 0.5 mol of N2H4, 0.5 mol of N2 is evolved and green, insoluble [(V(NS3))n] (5) results. Compound 4 is converted by disproportionation to [V(NS3)(NH3)] (6), but 4 does not act as a catalyst for disproportionation of N2H4 nor does it act as a catalyst for its reduction by Zn/HOC6H3Pri2-2,6. Compound 1 reacts with NR1(2)NR2(2) (R1 = H or SiMe3; R2(2) = Me2, MePh, or HPh) to give the hydrazide complexes [V(NS3)(NNR2(2)] (R2(2) = Me2, 2b; R2(2) = MePh, 2c; R2(2) = HPh, 2d), which are not protonated by anhydrous HBr nor are they reduced by Zn/HOC6H3Pri2-2,6. Compound 2b can also be prepared by reaction of [V(NNMe2)(dipp)3] (dipp = OC6H3Pri2-2,6) with NS3H3. N2H4 is displaced quantitatively from 4 by anions to give the salts [NR3(4)][V(NS3)X] (X = Cl, R3 = Et, 7a; X = Cl, R3 = Ph, 7b; X = Br, R3 = Et, 7c; X = N3, R3 = Bu(n), 7d; X = N3, R3 = Et, 7e; X = CN, R3 = Et, 7f). Compound 6 loses NH3 thermally to give 5, which can also be prepared from [VCl3(THF)3] and NS3H3/LiBun. Displacement of NH3 from 6 by ligands L gives the adducts [V(NS3)(L)] (L = MeCN, nu CN 2264 cm-1, 8a; L = ButNC, nu NC 2173 cm-1, 8b; L = C6H11NC, nu NC 2173 cm-1, 8c). Reaction of 4 with N3SiMe3 gives [V(NS3)(NSiMe3)] (9), which is converted to [V(NS3)(NH)] (10) by hydrolysis and to [V(NS3)(NCPh3)] (11) by reaction with ClCPh3. Compound 10 is converted into 1 by [NMe4]OH and to [V(NS3)NLi(THF)2] (12) by LiNPri in THF. A further range of imido complexes [V(NS3)(NR4)] (R4 = C6H4Y-4 where Y = H (13a), OMe (13b), Me (13c), Cl (13d), Br (13e), NO2 (13f); R4 = C6H4Y-3, where Y = OMe (13g); Cl (13h); R4 = C6H3Y2-3,4, where Y = Me (13i); Cl (13j); R4 = C6H11 (13k)) has been prepared by reaction of 1 with R4NCO. The precursor complex [V(OS2)O(dipp)] (14) [OS2(2-) = O(CH2CH2S)2(2-)] has been prepared from [VO(OPri)3], Hdipp, and OS2H2. It reacts with NH2NMe2 to give [V(OS2)(NNMe2)(dipp)] (15) and with N3SiMe3 to give [V(OS2)(NSiMe3)(dipp)] (16). A second oxide precursor, formulated as [V(OS2)1.5O] (17), has also been obtained, and it reacts with SiMe3NHNMe2 to give [V(OS2)(NNMe2)(OSiMe3)] (18). The X-ray crystal structures of the complexes 2b, 2c, 4, 6, 7a, 8a, 9, 10, 13d, 14, 15, 16, and 18 have been determined, and the 51V NMR and other spectroscopic parameters of the complexes are discussed in terms of electronic effects.  相似文献   

19.
Cao DK  Li YZ  Song Y  Zheng LM 《Inorganic chemistry》2005,44(10):3599-3604
Based on the [hydroxy(4-pyridyl)methyl]phosphonate ligand, three compounds with formula Ni{(4-C(5)H(4)N)CH(OH)PO(3)}(H(2)O) (1), Cd{(4-C(5)H(4)N)CH(OH)PO(3)}(H(2)O) (2), and Gd{(4-C(5)H(4)N)CH(OH)P(OH)O(2)}(3).6H(2)O (3) have been synthesized under hydrothermal conditions. The crystal data for 1 are as follows: orthorhombic, space group Pbca, a = 8.7980(13) A, b = 10.1982(15) A, and c = 17.945(3) A. For 2 the crystal data are as follows: monoclinic, space group C2/c, a = 23.344(6) Angstroms, b = 5.2745(14) Angstroms, c = 16.571(4) Angstroms, and beta = 121.576(4) degrees. The crystal data for 3 are as follows: rhombohedral, space group R, a = 22.2714(16) Angstroms, b = 22.2714(16) Angstroms, and c = 9.8838(11) Angstroms. Compound 1 adopts a three-dimensional pillared layered structure in which the inorganic layers made up of corner-sharing {NiO(5)N} octahedra and {CPO(3)} tetrahedra are connected by pyridyl groups. A two-dimensional layer structure is found in compound 2, which contains alternating inorganic double chains and pyridyl rings. Compound 3 has a one-dimensional chain structure where the Gd atoms are triply bridged by O-P-O linkages. The pyridyl nitrogen atom in 3 remains uncoordinated and is involved in the interchain hydrogen bonds. Magnetic susceptibility studies of 1 and 3 reveal that weak ferromagnetic interactions are mediated between Ni(II) centers in compound 1. For compound 3, the behavior is principally paramagnetic.  相似文献   

20.
The thiophene-based bis(N-methylamido-pyridine) ligand SC4H2-2,5-{C(=O)N(Me)-4-C5H4N}2 reacts with silver(I) salts AgX to give 1 : 1 complexes, which are characterized in the solid state as the macrocyclic complexes [Ag(2){SC4H2-2,5-(CONMe-4-C5H4N)2}2][X]2, which have the cis conformation of the C(=O)N(Me) group, when X = CF3CO2, NO3, or CF3SO3 but as the polymeric complex [Ag(n){SC4H2-2,5-(CONMe-4-C5H4N)2}n][X]n, with the unusual trans conformation of the C(=O)N(Me) group, when X = PF6. The bis(amido-pyridine) ligand SC4H2-2,5-{C(=O)NHCH2-3-C5H4N}2 reacts with silver(I) trifluoroacetate to give the polymeric complex [Ag(n){SC4H2-2,5-(CONHCH2-3-C5H4N)2}n][X]n, X = CF3CO2. The macrocyclic complexes contain transannular argentophilic secondary bonds. The polymers self assemble into sheet structures through interchain C=O...Ag and S...Ag bonds in [Ag(n){SC4H2-2,5-(CONMe-4-C5H4N)2}n][PF6]n and through Ag...Ag, C=O...Ag and Ag...O(trifluoroacetate)...HN secondary bonds in [Ag(n){SC4H2-2,5-(CONHCH2-3-C5H4N)2}n][CF3CO2]n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号