首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
The maximum edge weight clique (MEWC) problem, defined on a simple edge-weighted graph, is to find a subset of vertices inducing a complete subgraph with the maximum total sum of edge weights. We propose a quadratic optimization formulation for the MEWC problem and study characteristics of this formulation in terms of local and global optimality. We establish the correspondence between local maxima of the proposed formulation and maximal cliques of the underlying graph, implying that the characteristic vector of a MEWC in the graph is a global optimizer of the continuous problem. In addition, we present an exact algorithm to solve the MEWC problem. The algorithm is a combinatorial branch-and-bound procedure that takes advantage of a new upper bound as well as an efficient construction heuristic based on the proposed quadratic formulation. Results of computational experiments on some benchmark instances are also presented.  相似文献   

2.
Approximating the maximum vertex/edge weighted clique using local search   总被引:1,自引:0,他引:1  
This paper extends the recently introduced Phased Local Search (PLS) algorithm to more difficult maximum clique problems and also adapts the algorithm to handle maximum vertex/edge weighted clique instances. PLS is a stochastic reactive dynamic local search algorithm that interleaves sub-algorithms which alternate between sequences of iterative improvement, during which suitable vertices are added to the current sub-graph, and plateau search, where vertices of the current sub-graph are swapped with vertices not contained in the current sub-graph. These sub-algorithms differ in firstly their vertex selection techniques in that selection can be solely based on randomly selecting a vertex, randomly selecting within highest vertex degree, or random selecting within vertex penalties that are dynamically adjusted during the search. Secondly, the perturbation mechanism used to overcome search stagnation differs between the sub-algorithms. PLS has no problem instance dependent parameters and achieves state-of-the-art performance for maximum clique and maximum vertex/edge weighted clique problems over a large range of the commonly used DIMACS benchmark instances.  相似文献   

3.
4.
We discuss the effectiveness of integer programming for solving large instances of the independent set problem. Typical LP formulations, even strengthened by clique inequalities, yield poor bounds for this problem. We show that a strong bound can be obtained by the use of the so-called rank inequalities, which generalize the clique inequalities. For some problems the clique inequalities imply the rank inequalities, and then a strong bound is guaranteed already by the simpler formulation.  相似文献   

5.
A graph containment problem is to decide whether one graph can be modified into some other graph by using a number of specified graph operations. We consider edge deletions, edge contractions, vertex deletions and vertex dissolutions as possible graph operations permitted. By allowing any combination of these four operations we capture the following ten problems: testing on (induced) minors, (induced) topological minors, (induced) subgraphs, (induced) spanning subgraphs, dissolutions and contractions. A split graph is a graph whose vertex set can be partitioned into a clique and an independent set. Our results combined with existing results settle the parameterized complexity of all ten problems for split graphs.  相似文献   

6.
As is well known, the problem of finding a maximum clique in a graph isNP-hard. Nevertheless, NP-hard problems may have easy instances. This paperproposes a new, global optimization algorithm which tries to exploit favourabledata constellations, focussing on the continuous problem formulation: maximizea quadratic form over the standard simplex. Some general connections of thelatter problem with dynamic principles of evolutionary game theory areestablished. As an immediate consequence, one obtains a procedure whichconsists (a) of an iterative part similar to interior-path methods based on theso-called replicator dynamics; and (b) a routine to escape from inefficient,locally optimal solutions. For the special case of finding a maximum clique ina graph where the quadratic form arises from a regularization of the adjacencematrix, part (b), i.e. escaping from maximal cliques not of maximal size, isaccomplished with block pivoting methods based on (large) independent sets,i.e. cliques of the complementary graph. A simulation study is included whichindicates that the resulting procedure indeed has some merits.  相似文献   

7.
Finding complete subgraphs in a graph, that is, cliques, is a key problem and has many real-world applications, e.g., finding communities in social networks, clustering gene expression data, modeling ecological niches in food webs, and describing chemicals in a substance. The problem of finding the largest clique in a graph is a well-known difficult combinatorial optimization problem and is called the maximum clique problem. In this paper, we formulate a very convenient continuous characterization of the maximum clique problem based on the symmetric rank-one non-negative approximation of a given matrix and build a one-to-one correspondence between stationary points of our formulation and cliques of a given graph. In particular, we show that the local (resp. global) minima of the continuous problem corresponds to the maximal (resp. maximum) cliques of the given graph. We also propose a new and efficient clique finding algorithm based on our continuous formulation and test it on the DIMACS data sets to show that the new algorithm outperforms other existing algorithms based on the Motzkin–Straus formulation and can compete with a sophisticated combinatorial heuristic.  相似文献   

8.
A tight continuous relaxation is a crucial factor in solving mixed integer formulations of many NP-hard combinatorial optimization problems. The (weighted) max k-cut problem is a fundamental combinatorial optimization problem with multiple notorious mixed integer optimization formulations. In this paper, we explore four existing mixed integer optimization formulations of the max k-cut problem. Specifically, we show that the continuous relaxation of a binary quadratic optimization formulation of the problem is: (i) stronger than the continuous relaxation of two mixed integer linear optimization formulations and (ii) at least as strong as the continuous relaxation of a mixed integer semidefinite optimization formulation. We also conduct a set of experiments on multiple sets of instances of the max k-cut problem using state-of-the-art solvers that empirically confirm the theoretical results in item (i). Furthermore, these numerical results illustrate the advances in the efficiency of global non-convex quadratic optimization solvers and more general mixed integer nonlinear optimization solvers. As a result, these solvers provide a promising option to solve combinatorial optimization problems. Our codes and data are available on GitHub.  相似文献   

9.
A fast algorithm for the maximum clique problem   总被引:2,自引:0,他引:2  
Given a graph, in the maximum clique problem, one desires to find the largest number of vertices, any two of which are adjacent. A branch-and-bound algorithm for the maximum clique problem—which is computationally equivalent to the maximum independent (stable) set problem—is presented with the vertex order taken from a coloring of the vertices and with a new pruning strategy. The algorithm performs successfully for many instances when applied to random graphs and DIMACS benchmark graphs.  相似文献   

10.
On characterization of maximal independent sets via quadratic optimization   总被引:1,自引:0,他引:1  
This article investigates the local maxima properties of a box-constrained quadratic optimization formulation of the maximum independent set problem in graphs. Theoretical results characterizing binary local maxima in terms of certain induced subgraphs of the given graph are developed. We also consider relations between continuous local maxima of the quadratic formulation and binary local maxima in the Hamming distance-1 and distance-2 neighborhoods. These results are then used to develop an efficient local search algorithm that provides considerable speed-up over a typical local search algorithm for the binary Hamming distance-2 neighborhood.  相似文献   

11.
This paper extends the recently introduced Phased Local Search (PLS) maximum clique algorithm to unweighted/weighted maximum independent set and minimum vertex cover problems. PLS is a stochastic reactive dynamic local search algorithm that interleaves sub-algorithms which alternate between sequences of iterative improvement, during which suitable vertices are added to the current sub-graph, and plateau search, during which vertices of the current sub-graph are swapped with vertices not contained in the current sub-graph. These sub-algorithms differ in their vertex selection techniques and also in the perturbation mechanism used to overcome search stagnation. PLS has no problem instance dependent parameters and achieves state-of-the-art performance over a large range of the commonly used DIMACS and other benchmark instances.  相似文献   

12.
Approximating maximum independent sets by excluding subgraphs   总被引:5,自引:0,他引:5  
An approximation algorithm for the maximum independent set problem is given, improving the best performance guarantee known toO(n/(logn)2). We also obtain the same performance guarantee for graph coloring. The results can be combined into a surprisingly strongsimultaneous performance guarantee for the clique and coloring problems.The framework ofsubgraph-excluding algorithms is presented. We survey the known approximation algorithms for the independent set (clique), coloring, and vertex cover problems and show how almost all fit into that framework. We show that among subgraph-excluding algorithms, the ones presented achieve the optimal asymptotic performance guarantees.A preliminary version of this paper appeared in [9].Supported in part by National Science Foundation Grant CCR-8902522 and PYI Award CCR-9057488.Research done at Rutgers University. Supported in part by Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) fellowship.  相似文献   

13.
An intersection graph of rectangles in the (x, y)-plane with sides parallel to the axes is obtained by representing each rectangle by a vertex and connecting two vertices by an edge if and only if the corresponding rectangles intersect. This paper describes algorithms for two problems on intersection graphs of rectangles in the plane. One is an O(n log n) algorithm for finding the connected components of an intersection graph of n rectangles. This algorithm is optimal to within a constant factor. The other is an O(n log n) algorithm for finding a maximum clique of such a graph. It seems interesting that the maximum clique problem is polynomially solvable, because other related problems, such as the maximum stable set problem and the minimum clique cover problem, are known to be NP-complete for intersection graphs of rectangles. Furthermore, we briefly show that the k-colorability problem on intersection graphs of rectangles is NP-complete.  相似文献   

14.
Given an undirected graph G=(V,E) with vertex set V={1,??,n} and edge set E?V×V. Let w:V??Z + be a weighting function that assigns to each vertex i??V a positive integer. The maximum weight clique problem (MWCP) is to determine a clique of maximum weight. This paper introduces a tabu search heuristic whose key features include a combined neighborhood and a dedicated tabu mechanism using a randomized restart strategy for diversification. The proposed algorithm is evaluated on a total of 136 benchmark instances from different sources (DIMACS, BHOSLIB and set packing). Computational results disclose that our new tabu search algorithm outperforms the leading algorithm for the maximum weight clique problem, and in addition rivals the performance of the best methods for the unweighted version of the problem without being specialized to exploit this problem class.  相似文献   

15.
In this paper, we study the global routing problem in VLSI design and the multicast routing problem in communication networks. First we propose new and realistic models for both problems. In the global routing problem in VLSI design, we are given a lattice graph and subsets of the vertex set. The goal is to generate trees spanning these vertices in the subsets to minimize a linear combination of overall wirelength (edge length) and the number of bends of trees with respect to edge capacity constraints. In the multicast routing problem in communication networks, a graph is given to represent the network, together with subsets of the vertex set. We are required to find trees to span the given subsets and the overall edge length is minimized with respect to capacity constraints. Both problems are APX-hard. We present the integer linear programming (LP) formulation of both problems and solve the LP relaxations by the fast approximation algorithms for min-max resource-sharing problems in [K. Jansen, H. Zhang, Approximation algorithms for general packing problems and their application to the multicast congestion problem, Math. Programming, to appear, doi:10.1007/s10107-007-0106-8] (which is a generalization of the approximation algorithm proposed by Grigoriadis and Khachiyan [Coordination complexity of parallel price-directive decomposition, Math. Oper. Res. 2 (1996) 321-340]). For the global routing problem, we investigate the particular property of lattice graphs and propose a combinatorial technique to overcome the hardness due to the bend-dependent vertex cost. Finally, we develop asymptotic approximation algorithms for both problems with ratios depending on the best known approximation ratio for the minimum Steiner tree problem. They are the first known theoretical approximation bound results for the problems of minimizing the total costs (including both the edge and the bend costs) while spanning all given subsets of vertices.  相似文献   

16.
This paper introduces a new model for the planar maximal covering location problem (PMCLP) under different block norms. The problem involves locating g facilities anywhere on the plane in order to cover the maximum number of n given demand points. The generalization, in this paper, is that the distance measures assigned to facilities are block norms of different types and different proximity measures. First, the PMCLP under different block norms is modelled as a maximum clique partition problem on an equivalent multi-interval graph. Then, the equivalent graph problem is modelled as an unconstrained binary quadratic problem (UQP). Both the maximum clique partition problem and the UQP are NP-hard problems; therefore, we solve the UQP format through a genetic algorithm heuristic. Computational examples are given.  相似文献   

17.
A set of vertices SV is called a safe separator for treewidth, if S is a separator of G, and the treewidth of G equals the maximum of the treewidth over all connected components W of G-S of the graph, obtained by making S a clique in the subgraph of G, induced by WS. We show that such safe separators are a very powerful tool for preprocessing graphs when we want to compute their treewidth. We give several sufficient conditions for separators to be safe, allowing such separators, if existing, to be found in polynomial time. In particular, every inclusion minimal separator of size one or two is safe, every minimum separator of size three that does not split off a component with only one vertex is safe, and every inclusion minimal separator that is an almost clique is safe; an almost clique is a set of vertices W such that there is a vW with W-{v} a clique. We report on experiments that show significant reductions of instance sizes for graphs from probabilistic networks and frequency assignment.  相似文献   

18.
It is well known that the problem of maximization of any difference of convex functions can be turned into a convex maximization problem; here, the aim is a piecewise convex maximization problem instead. Although this may seem harder, sometimes the dimension may be reduced by 1, and the local search may be improved by using extreme points of the closure of the convex hull of better points. We show that it is always the case for both binary and permutation problems and give, as such instances, piecewise convex formulations for the maximum clique problem and the quadratic assignment problem.  相似文献   

19.
最大团问题是一个经典的组合优化问题.在Motzkin和Straus的二次规划模型基础上,给出一种求解该问题的D函数正则化算法.通过引进D函数可以改善问题的凸性.几个标准考题的计算结果表明,该算法稳定有效.  相似文献   

20.
The maximum clique problem is an important problem in graph theory. Many real-life problems are still being mapped into this problem for their effective solutions. A natural extension of this problem that has emerged very recently in many real-life networks, is its fuzzification. The problem of finding the maximum fuzzy clique has been formalized on fuzzy graphs and subsequently addressed in this paper. It has been shown here that the problem reduces to an unconstrained quadratic 0–1 programming problem. Using a maximum neural network, along with mutation capability of genetic adaptive systems, the reduced problem has been solved. Empirical studies have been done by applying the method on stock flow graphs to identify the collusion set, which contains a group of traders performing unfair trading among themselves. Additionally, it has been applied on a gene co-expression network to find out significant gene modules and on some benchmark graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号