首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A dual problem is developed for the constrained multifacility minisum location problems involving mixed norms. General optimality conditions are also obtained providing new algorithms based on the concept of partial inverse of a multifunction. These algorithms which are decomposition methods, generate sequences globally converging to a primal and a dual solution respectively. Numerical results are reported.  相似文献   

2.
Sparse regression using mixed norms   总被引:1,自引:0,他引:1  
Mixed norms are used to exploit in an easy way, both structure and sparsity in the framework of regression problems, and introduce implicitly couplings between regression coefficients. Regression is done through optimization problems, and corresponding algorithms are described and analyzed. Beside the classical sparse regression problem, multi-layered expansion on unions of dictionaries of signals are also considered. These sparse structured expansions are done subject to an exact reconstruction constraint, using a modified FOCUSS algorithm. When the mixed norms are used in the framework of regularized inverse problem, a thresholded Landweber iteration is used to minimize the corresponding variational problem.  相似文献   

3.
We investigate some simple finite element discretizations for the axisymmetric Laplace equation and the azimuthal component of the axisymmetric Maxwell equations as well as multigrid algorithms for these discretizations. Our analysis is targeted at simple model problems and our main result is that the standard V-cycle with point smoothing converges at a rate independent of the number of unknowns. This is contrary to suggestions in the existing literature that line relaxations and semicoarsening are needed in multigrid algorithms to overcome difficulties caused by the singularities in the axisymmetric Maxwell problems. Our multigrid analysis proceeds by applying the well known regularity based multigrid theory. In order to apply this theory, we prove regularity results for the axisymmetric Laplace and Maxwell equations in certain weighted Sobolev spaces. These, together with some new finite element error estimates in certain weighted Sobolev norms, are the main ingredients of our analysis.

  相似文献   


4.
Tikhonov’s regularized method of least squares and its generalizations to non-Euclidean norms, including polyhedral, are considered. The regularized method of least squares is reduced to mathematical programming problems obtained by “instrumental” generalizations of the Tikhonov lemma on the minimal (in a certain norm) solution of a system of linear algebraic equations with respect to an unknown matrix. Further studies are needed for problems concerning the development of methods and algorithms for solving reduced mathematical programming problems in which the objective functions and admissible domains are constructed using polyhedral vector norms.  相似文献   

5.
For linear inclusions in discrete or continuous time several quantities characterizing the growth behavior of the corresponding semigroup are analyzed. These quantities are the joint spectral radius, the initial growth rate and (for bounded semigroups) the transient bound. It is discussed how these constants relate to one another and how they are characterized by various norms. A complete duality theory is developed in this framework, relating semigroups and dual semigroups and extremal or transient norms with their respective dual norms.  相似文献   

6.
Multiscale or multiphysics problems often involve coupling of partial differential equations posed on domains of different dimensionality. In this work, we consider a simplified model problem of a 3d‐1d coupling and the main objective is to construct algorithms that may utilize standard multilevel algorithms for the 3d domain, which has the dominating computational complexity. Preconditioning for a system of two elliptic problems posed, respectively, in a three‐dimensional domain and an embedded one dimensional curve and coupled by the trace constraint is discussed. Investigating numerically the properties of the well‐defined discrete trace operator, it is found that negative fractional Sobolev norms are suitable preconditioners for the Schur complement of the system. The norms are employed to construct a robust block diagonal preconditioner for the coupled problem.  相似文献   

7.
The convergence behaviour of a number of algorithms based on minimizing residual norms over Krylov subspaces is not well understood. Residual or error bounds currently available are either too loose or depend on unknown constants that can be very large. In this paper we take another look at traditional as well as alternative ways of obtaining upper bounds on residual norms. In particular, we derive inequalities that utilize Chebyshev polynomials and compare them with standard inequalities. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
《Journal of Complexity》2005,21(3):294-313
This article considers the approximation problem on periodic functions of anisotropic Besov classes with mixed norms using standard information. The asymptotic decay rates of the best algorithms in the worst-case setting are determined. An interpolating algorithm that attains this decay rate is given as well.  相似文献   

9.
Limited-memory quasi-Newton methods and trust-region methods represent two efficient approaches used for solving unconstrained optimization problems. A straightforward combination of them deteriorates the efficiency of the former approach, especially in the case of large-scale problems. For this reason, the limited-memory methods are usually combined with a line search. We show how to efficiently combine limited-memory and trust-region techniques. One of our approaches is based on the eigenvalue decomposition of the limited-memory quasi-Newton approximation of the Hessian matrix. The decomposition allows for finding a nearly-exact solution to the trust-region subproblem defined by the Euclidean norm with an insignificant computational overhead as compared with the cost of computing the quasi-Newton direction in line-search limited-memory methods. The other approach is based on two new eigenvalue-based norms. The advantage of the new norms is that the trust-region subproblem is separable and each of the smaller subproblems is easy to solve. We show that our eigenvalue-based limited-memory trust-region methods are globally convergent. Moreover, we propose improved versions of the existing limited-memory trust-region algorithms. The presented results of numerical experiments demonstrate the efficiency of our approach which is competitive with line-search versions of the L-BFGS method.  相似文献   

10.
Two nonconforming penalty methods for the two-dimensional stationary Navier-Stokes equations are studied in this paper. These methods are based on the weakly continuous $P_1$ vector fields and the locally divergence-free (LDF) finite elements, which respectively penalize local divergence and are discontinuous across edges. These methods have no penalty factors and avoid solving the saddle-point problems. The existence and uniqueness of the velocity solution are proved, and the optimal error estimates of the energy norms and $L^2$-norms are obtained. Moreover, we propose unified pressure recovery algorithms and prove the optimal error estimates of $L^2$-norm for pressure. We design a unified iterative method for numerical experiments to verify the correctness of the theoretical analysis.  相似文献   

11.
In this paper, we consider iterative algorithms of Uzawa type for solving linear nonsymmetric saddle point problems. Specifically, we consider systems, written as usual in block form, where the upper left block is an invertible linear operator with positive definite symmetric part. Such saddle point problems arise, for example, in certain finite element and finite difference discretizations of Navier-Stokes equations, Oseen equations, and mixed finite element discretization of second order convection-diffusion problems. We consider two algorithms, each of which utilizes a preconditioner for the operator in the upper left block. Convergence results for the algorithms are established in appropriate norms. The convergence of one of the algorithms is shown assuming only that the preconditioner is spectrally equivalent to the inverse of the symmetric part of the operator. The other algorithm is shown to converge provided that the preconditioner is a sufficiently accurate approximation of the inverse of the upper left block. Applications to the solution of steady-state Navier-Stokes equations are discussed, and, finally, the results of numerical experiments involving the algorithms are presented.

  相似文献   


12.

An important open problem in geometric complex analysis is to establish some algorithms for explicit determination of the basic functionals intrinsically connected with conformal and quasiconformal mappings such as their Teichmüller and Grunsky norms, Fredholm eigenvalues and the quasireflection coefficient. This problem has not been solved even for generic quadrilaterals. We provide a restricted solution of the problem for unbounded rectilinear polygons.

  相似文献   

13.
Penalized estimation has become an established tool for regularization and model selection in regression models. A variety of penalties with specific features are available and effective algorithms for specific penalties have been proposed. But not much is available to fit models with a combination of different penalties. When modeling the rent data of Munich as in our application, various types of predictors call for a combination of a Ridge, a group Lasso and a Lasso-type penalty within one model. We propose to approximate penalties that are (semi-)norms of scalar linear transformations of the coefficient vector in generalized structured models—such that penalties of various kinds can be combined in one model. The approach is very general such that the Lasso, the fused Lasso, the Ridge, the smoothly clipped absolute deviation penalty, the elastic net and many more penalties are embedded. The computation is based on conventional penalized iteratively re-weighted least squares algorithms and hence, easy to implement. New penalties can be incorporated quickly. The approach is extended to penalties with vector based arguments. There are several possibilities to choose the penalty parameter(s). A software implementation is available. Some illustrative examples show promising results.  相似文献   

14.
One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued measures is defined. Using this integral, different norms (we called them Monge–Kantorovich norm, modified Monge–Kantorovich norm and Hanin norm) on the space of measures are introduced, generalizing the theory of (weak) convergence for probability measures on metric spaces. These norms introduce new (equivalent) metrics on the initial compact metric space.  相似文献   

15.
An adaptive pruning algorithm for the discrete L-curve criterion   总被引:1,自引:0,他引:1  
We describe a robust and adaptive implementation of the L-curve criterion. The algorithm locates the corner of a discrete L-curve which is a log–log plot of corresponding residual norms and solution norms of regularized solutions from a method with a discrete regularization parameter (such as truncated SVD or regularizing CG iterations). Our algorithm needs no predefined parameters, and in order to capture the global features of the curve in an adaptive fashion, we use a sequence of pruned L-curves that correspond to considering the curves at different scales. We compare our new algorithm to existing algorithms and demonstrate its robustness by numerical examples.  相似文献   

16.
Vector programming seeks to identify efficient solutions of multiple-objective problems. It is closely related to parametric programming and three examples of this relationship, using objective weights, target (or goal) levels and weighted norms, are described. In each case, the use of the relationship to develop algorithms for determining the efficient set or to obtain characterizations of efficiency is investigated.  相似文献   

17.
In this paper, we study regression problems over a separable Hilbert space with the square loss, covering non-parametric regression over a reproducing kernel Hilbert space. We investigate a class of spectral/regularized algorithms, including ridge regression, principal component regression, and gradient methods. We prove optimal, high-probability convergence results in terms of variants of norms for the studied algorithms, considering a capacity assumption on the hypothesis space and a general source condition on the target function. Consequently, we obtain almost sure convergence results with optimal rates. Our results improve and generalize previous results, filling a theoretical gap for the non-attainable cases.  相似文献   

18.
Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work, we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplementary materials available online.  相似文献   

19.
We study the numerical integration of functions depending on an infinite number of variables. We provide lower error bounds for general deterministic algorithms and provide matching upper error bounds with the help of suitable multilevel algorithms and changing-dimension algorithms. More precisely, the spaces of integrands we consider are weighted, reproducing kernel Hilbert spaces with norms induced by an underlying anchored function space decomposition. Here the weights model the relative importance of different groups of variables. The error criterion used is the deterministic worst-case error. We study two cost models for function evaluations that depend on the number of active variables of the chosen sample points, and we study two classes of weights, namely product and order-dependent weights and the newly introduced finite projective dimension weights. We show for these classes of weights that multilevel algorithms achieve the optimal rate of convergence in the first cost model while changing-dimension algorithms achieve the optimal convergence rate in the second model. As an illustrative example, we discuss the anchored Sobolev space with smoothness parameter \(\alpha \) and provide new optimal quasi-Monte Carlo multilevel algorithms and quasi-Monte Carlo changing-dimension algorithms based on higher-order polynomial lattice rules.  相似文献   

20.
This study proposes a framework for research which takes into account three aspects of sociomathematical norms: teachers’ endorsed norms, teachers’ and students’ enacted norms, and students’ perceived norms. We investigate these aspects of sociomathematical norms in two elementary school classrooms in relation to mathematically based and practically based explanations. Results indicate that even when the observed enacted norms are in agreement with the teachers’ endorsed norms, the students may not perceive these same norms. These results highlight the need to consider the students’ perspective when investigating sociomathematical norms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号