首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a method is developed for solving hyperbolic initial boundary value problems in one space dimension using domain decomposition, which can be extended to problems in several space dimensions. We minimize a functional which is the sum of squares of the L 2 norms of the residuals and a term which is the sum of the squares of the L 2 norms of the jumps in the function across interdomain boundaries. To make the problem well posed the interdomain boundaries are made to move back and forth at alternate time steps with sufficiently high speed. We construct parallel preconditioners and obtain error estimates for the method. The Schwarz waveform relaxation method is often employed to solve hyperbolic problems using domain decomposition but this technique faces difficulties if the system becomes characteristic at the inter-element boundaries. By making the inter-element boundaries move faster than the fastest wave speed associated with the hyperbolic system we are able to overcome this problem.  相似文献   

2.
This study examines finite‐time synchronization for a class of N‐coupled complex partial differential systems (PDSs) with time‐varying delay. The problem of finite‐time synchronization for coupled drive‐response PDSs with time‐varying delay is similarly considered. The synchronization error dynamic of the PDSs is defined in the q‐dimensional spatial domain. We construct a feedback controller to achieve finite‐time synchronization. Sufficient conditions are derived by using the Lyapunov‐Krasoviskii stability approach and inequalities technology to ensure that the proposed networks achieve synchronization in finite time. The proposed systems demonstrate extensive application. Finally, an example is used to verify the theoretical results.  相似文献   

3.
We investigate a backward problem for the Rayleigh‐Stokes problem, which aims to determine the initial status of some physical field such as temperature for slow diffusion from its present measurement data. This problem is well‐known to be ill‐posed because of the rapid decay of the forward process. We construct a regularized solution using the filter regularization method in the Gaussian random noise. Under some a priori assumptions on the exact solution, we establish the expectation between the exact solution and the regularized solution in the L2 and Hm norms.  相似文献   

4.
Over 30 years ago, Kalai proved a beautiful d‐dimensional analog of Cayley's formula for the number of n‐vertex trees. He enumerated d‐dimensional hypertrees weighted by the squared size of their (d ? 1)‐dimensional homology group. This, however, does not answer the more basic problem of unweighted enumeration of d‐hypertrees, which is our concern here. Our main result, Theorem 1.4, significantly improves the lower bound for the number of d‐hypertrees. In addition, we study a random 1‐out model of d‐complexes where every (d ? 1)‐dimensional face selects a random d‐face containing it, and show that it has a negligible d‐dimensional homology.  相似文献   

5.
Let R be a commutative noetherian ring. Lindo and Pande have recently posed the question asking when every ideal of R is isomorphic to some trace ideal of R. This paper studies this question and gives several answers. In particular, a complete answer is given in the case where R is local: it is proved in this paper that every ideal of R is isomorphic to a trace ideal if and only if R is an artinian Gorenstein ring, or a 1‐dimensional hypersurface with multiplicity at most 2, or a unique factorization domain.  相似文献   

6.
The aim of this work is to solve the backward problem for a time‐fractional diffusion equation with variable coefficients in a general bounded domain. The problem is ill‐posed in L 2 norm sense. An iteration scheme is proposed to obtain a regularized solution. Two kinds of convergence rates are obtained using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule. Numerical examples in one‐dimensional and two‐dimensional cases are provided to show the effectiveness of the proposed methods. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 2029–2041, 2014  相似文献   

7.
Lotfi Abdelhakim 《PAMM》2004,4(1):348-349
The bilateral or unilateral contact problem with Coulomb friction between two elastic bodies is considered [1]. An algorithm is introduced to solve the resulting finite element system by a non‐overlapping domain decomposition method [2, 3]. The global problem is transformed to a independant local problems posed in each bodie and a problem posed on the contact surface (the interface problem). The solution is obtained by using a successive approximation method, in each step of this algorithm we solve two intermediate problems the first with prescribed tangential pressure and the second with prescribed normal pressure [8]. Our preconditioner construction is based on the application of the H‐matrix technique [6, 7] together with the representation of the H1/2 seminorm by a sum of partial seminorms [4]. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In this paper, we study the 2D Bénard problem, a system with the Navier–Stokes equations for the velocity field coupled with a convection–diffusion equation for the temperature, in an arbitrary domain (bounded or unbounded) satisfying the Poincaré inequality with nonhomogeneous boundary conditions and nonautonomous external force and heat source. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal finite‐dimensional pullback Dσ‐attractor for the process associated to the problem. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
We introduce a method for reducing k‐tournament problems, for k ≥ 3, to ordinary tournaments, that is, 2‐tournaments. It is applied to show that a k‐tournament on n ≥ k + 1 + 24d vertices (when k ≥ 4) or on n ≥ 30d + 2 vertices (when k = 3) has d edge‐disjoint Hamiltonian cycles if and only if it is d‐edge‐connected. Ironically, this is proved by ordinary tournament arguments although it only holds for k ≥ 3. We also characterizatize the pancyclic k‐tournaments, a problem posed by Gutin and Yeo.(Our characterization is slightly incomplete in that we prove it only for n large compared to k.). © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

10.
In this article, the local well‐posedness of Cauchy's problem is explored for a system of quadratic nonlinear Schrödinger equations in the space Lp( R n). In a special case of mass resonant 2 × 2 system, it is well known that this problem is well posed in Hs(s≥0) and ill posed in Hs(s < 0) in two‐space dimensions. By translation on a linear semigroup, we show that the general system becomes locally well posed in Lp( R 2) for 1 < p < 2, for which p can arbitrarily be close to the scaling limit pc=1. In one‐dimensional case, we show that the problem is locally well posed in L1( R ); moreover, it has a measure valued solution if the initial data are a Dirac function. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
We present two new coupling models for the three dimensional magnetostatic problem. In the first model, we propose a new coupled formulation, prove that it is well posed and solves Maxwell’s equations in the whole space. In the second, we propose a new coupled formulation for the Local Discontinuous Galerkin method, the finite element method and the boundary element method. This formulation is obtained by coupling the LDG method inside a bounded domain Ω1 with the FEM method inside a layer where Ω is a bounded domain which is made up of material of permeability μ and such that , and with a boundary element method involving Calderon’s equations. We prove that our formulation is consistent and well posed and we present some a priori error estimates for the method.  相似文献   

12.
On a three–dimensional exterior domain Ω we consider the Dirichlet problem for the stationary Navier–Stokes system. We construct an approximation problem on the domain ΩR, which is the intersection of Ω with a sufficiently large ball, while we create nonlinear, but local artificial boundary conditions on the truncation boundary. We prove existence and uniqueness of the solutions to the approximating problem together with asymptotically precise pointwise error estimates as R tends to infinity.  相似文献   

13.
We consider the finite element approximation of the Laplacian operator with the homogeneous Dirichlet boundary condition, and study the corresponding Lagrange interpolation in the context of finite element superconvergence. For d‐dimensional Qk‐type elements with d ≥ 1 and k ≥ 1, we prove that the interpolation points must be the Lobatto points if the Lagrange interpolation and the finite element solution are superclose in H1 norm. For d‐dimensional Pk‐type elements, we consider the standard Lagrange interpolation—the Lagrange interpolation with interpolation points being the principle lattice points of simplicial elements. We prove for d ≥ 2 and k ≥ d + 1 that such interpolation and the finite element solution are not superclose in both H1 and L2 norms and that not all such interpolation points are superconvergence points for the finite element approximation. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 33–59, 2004.  相似文献   

14.
In this paper, we consider an initial boundary value problem for the 3‐dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density‐dependent viscosity and resistivity coefficients over a bounded smooth domain. Global in time unique strong solution is proved to exist when the L2 norms of initial vorticity and current density are both suitably small with arbitrary large initial density, and the vacuum of initial density is also allowed. Finally, we revisit the Navier‐Stokes model without electromagnetic effect. We find that this initial boundary problem also admits a unique global strong solution under other conditions. In particular, we prove small kinetic‐energy strong solution exists globally in time, which extends the recent result of Huang and Wang.  相似文献   

15.
We prove the stability of the one‐dimensional kink solution of the Cahn‐Hilliard equation under d‐dimensional perturbations for d ≥ 3. We also establish a novel scaling behavior of the large‐time asymptotics of the solution. The leading asymptotics of the solution is characterized by a length scale proportional to t1/3 instead of the usual t1/2 scaling typical to parabolic problems. © 2004 Wiley Periodicals, Inc.  相似文献   

16.
The coupled problem for a generalized Newtonian Stokes flow in one domain and a generalized Newtonian Darcy flow in a porous medium is studied in this work. Both flows are treated as a first‐order system in a stress‐velocity formulation for the Stokes problem and a volumetric flux‐hydraulic potential formulation for the Darcy problem. The coupling along an interface is done using the well‐known Beavers–Joseph–Saffman interface condition. A least squares finite element method is used for the numerical approximation of the solution. It is shown that under some assumptions on the viscosity the error is bounded from above and below by the least squares functional. An adaptive refinement strategy is examined in several numerical examples where boundary singularities are present. Due to the nonlinearity of the problem a Gauss–Newton method is used to iteratively solve the problem. It is shown that the linear variational problems arising in the Gauss–Newton method are well posed. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1150–1173, 2015  相似文献   

17.
We present an average case analysis of the minimum spanning tree heuristic for the power assignment problem. The worst‐case approximation ratio of this heuristic is 2. We show that in Euclidean d‐dimensional space, when the vertex set consists of a set of i.i.d. uniform random independent, identically distributed random variables in [0,1]d, and the distance power gradient equals the dimension d, the minimum spanning tree‐based power assignment converges completely to a constant depending only on d.  相似文献   

18.
We consider a coupled finite element (fe)–boundary element (be) approach for three‐dimensional magnetic field problems. The formulation is based on a vector potential in a bounded domain (fe) and a scalar potential in an unbounded domain (be). We describe a coupled variational problem yielding a unique solution where the constraints in the trial spaces are replaced by appropriate side conditions. Then we discuss a Galerkin discretization of the coupled problem and prove a quasi‐optimal error estimate. Finally we discuss an efficient preconditioned iterative solution strategy for the resulting linear system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
We develop a point source method (PSM) to obtain flow field reconstructions from remote measurements. The PSM belongs to the class of decomposition methods in inverse scattering because it solves the nonlinear and ill‐posed inverse shape reconstruction problem by a decomposition into a linear ill‐posed problem and a nonlinear well‐posed problem. As a model problem, we investigate the reconstruction of the flow field of two‐dimensional stationary Oseen equation, which is obtained by linearizing the Navier–Stokes equation with kinematic viscosity μ > 0 around the constant velocity u0. In contrast to acoustics or electromagnetics, the use of the PSM in fluid dynamics leads to a number of challenges in terms of the analysis and the proper setup of the scheme, in particular, because the null‐spaces of the integral operators under consideration are no longer trivial and the fundamental solution is not symmetric in its spatial coordinate. We provide a suitable formulation of the method and prove convergence of flow reconstructions by the PSM. For the realization of the reconstruction when the inclusions are not known, we employ domain sampling. We will demonstrate the feasibility of the method for reconstructing one or several objects by numerical examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The paper is the second in a set of two papers, which are devoted to a unified approach to the problem of completeness of the generalized eigenvectors (the root vectors) for a specific class of linear non‐selfadjoint unbounded matrix differential operators. The list of the problems for which such operators are the dynamics generators includes the following: (a) initial boundary‐value problem (IBVP) for a non‐homogeneous string with both distributed and boundary damping; (b) IBVP for small vibrations of an ideal filament with a one‐parameter family of dissipative boundary conditions at one end and with a heavy load at the other end; this filament problem is treated for two cases of the boundary parameter: non‐singular and singular; (c) IBVP for a three‐dimensional damped wave equation with spherically symmetric coefficients and both distributed and boundary damping; (d) IBVP for a system of two coupled hyperbolic equations constituting a Timoshenko beam model with variable coefficients and boundary damping; (e) IBVP for a coupled Euler‐Bernoulli and Timoshenko beam model with boundary energy dissipation (the model known in engineering literature as bending‐torsion vibration model); (f) IBVP for two coupled Timoshenko beams model, which is currently accepted as an appropriate model describing vibrational behavior of a longer double‐walled carbon nanotube. Problems have been discussed in the first paper of the aforementioned set. Problems are discussed in the present paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号