首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Novel oxygen sensing materials consisting of [Ru(Bphen)2bpy]2+ (Bphen=4,7-diphenyl-1,10-phenanthroline, bpy=2,2′-bipyridyl) portion covalently grafted to the backbones of the ordered functionalized mesoporous MCM-41 are synthesized by co-condensation of tetraethoxysilane (TEOS) and the functionalized Ru(II) complex [Ru(Bphen)2Bpy-Si]2+ using surfactant cetyltrimethylammoniumbromide (CTAB) as template. The Bpy-Si was used as not only one of the precursors of the sol-gel process but also the second ligand of Ru(Bphen)2Cl2·2H2O complex to prepare the functionalized mesoporous materials for oxygen sensors. Dye leaching shortcoming is overcome due to the Si-C bonds. The derivative mesoporous oxygen sensing materials are characterized by Fourier transform infrared (FT-IR), small angle X-ray diffraction (SAXRD), luminescence intensity quenching Stern-Volmer plots, and excited-state decay analysis. The mesoporous materials show higher sensitivity to the O2 concentration in N2 (I0/I100=23.2) and shorter response time (1.2 s) in comparison with those based on sol-gel method. When the concentration of oxygen is 10%, the luminescence intensity of the oxygen sensor can be quenched by 89.9%, suggesting that it is highly sensing at low concentration of oxygen.  相似文献   

2.
Two most popular ordered mesoporous silicas, MCM-41 and SBA-15, exhibiting uniform mesopores of approximately cylindrical shapes, have been used as model adsorbents for verification, improvement and/or development of adsorption-based methods for characterization nanoporous materials. While the applicability of the classical methods for pore size analysis was widely examined by employing MCM-41 materials, the large-pore materials such as SBA-15 did not find adequate usage for this type of studies. The current work addresses the issue of applicability of classical methods such as Barrett-Joyner-Hallenda (BJH) and Broekhoff-de Boer (BdB) methods for pore size analysis of mesoporous silicas by using MCM-41 and SBA-15 materials as model adsorbents. In addition, the Kruk-Jaroniec-Sayari (KJS) method, which is based on the BJH algorithm and experimental relations for the pore width and statistical film thickness, is discussed too. While the MCM-41 materials cover the range of small mesopores (about 2-7 nm), the inclusion of SBA-15 materials allowed us to examine the range of the pore diameters up to about 12 nm. The high quality MCM-41 and SBA-15 samples are used to discuss the applicability and limitations of the aforementioned characterization methods and to propose some recommendations for pore size analysis of these materials.  相似文献   

3.
MCM-41 mesoporous silica has been functionalized with aromatic carboxylic acids salicylic acid (Sal) and 2-hydroxyl-3-methylbenzoic acid (HMBA) through co-condensation approach of tetraethoxysilane (TEOS) in the presence of the cetyltrimethylammonium bromide (CTAB) surfactant as a template. Organic ligands salicylic acid or 2-hydroxyl-3-methylbenzoic acid grafted to the coupling agent 3-(triethoxysilyl)-propyl isocyanate (TEPIC) was used as the precursor for the preparation of an organic–inorganic hybrid materials. Novel organic–inorganic mesoporous luminescent hybrid containing Ln3+ (Tb3+, Eu3+) complexes covalently attached to the functionalized ordered mesoporous MCM-41, which were designated as Ln-Sal-MCM-41 and Ln-HMBA-MCM-41, respectively, were obtained by sol–gel process. The luminescence properties of these resulting materials were characterized in detail, and the results reveal that luminescent mesoporous materials have high surface area, uniformity in the mesopore structure and good crystallinity. Moreover, the mesoporous material covalently bonded Tb3+ complex (Tb-Sal-MCM-41 and Tb-HMBA-MCM-41) exhibit the stronger characteristic emission of Tb3+ and longer lifetime than the corresponding Eu-containg materials Eu-Sal-MCM-41 and Eu-HMBA-MCM-41 due to the triplet state energy of modified organic ligands Sal-TEPIC and HMBA-TEPIC match with the emissive energy level of Tb3+ very well. In addition, the luminescence lifetime and emission quantum efficiency of 5D0 Eu3+ excited state also indicates the efficient intramolecular energy transfer process in Tb-SAL-MCM-41 and Tb-HMBA-MCM-41.  相似文献   

4.
Hexagonally ordered mesoporous silica materials, MCM-41 and SBA-15, have been synthesized and loaded with Ag nanoparticles, utilizing both chemical synthesis and ultra-short pulsed laser ablation in liquid. In laser ablation, a silver target, immersed in aqueous suspension of ordered mesoporous silica SBA-15, was irradiated by ultra-short laser pulses to generate silver nanoparticles. For comparison, samples of similar silver contents were prepared either by incorporating silver into the SBA-15 during a hydrothermal synthesis or by introducing silver in MCM-41 by template ion-exchange. Samples were characterized by XRD, N2 physisorption, TEM and UV–vis spectroscopy. All preparations contained significant amount of 5–50 nm size silver agglomerates on the outer surface of the silica particles. The laser ablation process did not cause significant destruction of the SBA-15 structure and metallic silver (Ag0) nanoparticles were mainly generated. It is demonstrated that by laser ablation in aqueous silica suspension smaller and more uniform metallic silver particles can be produced and loaded on the surface of the silica support than by synthesis procedures. Catalytic properties of the samples have been tested in the total oxidation of toluene. Because of its favorable Ag dispersity, the Ag/SBA-15 catalyst, generated by the laser ablation method, had better catalytic stability and, relative to its Ag load, higher activity than the conventional Ag/SBA-15 preparations.  相似文献   

5.
The adsorption behaviour of the n-octane/ethanol binary liquid mixture has been studied on ordered mesoporous silica materials. Adsorption excesses on SBA-15, SBA-16 and MCM-48 solids are measured and described by mathematical functions. The experimental adsorption excess isotherms are presented and discussed. The mesoporous silicas used for liquid-adsorption experiments are characterized by nitrogen adsorption before and after liquid adsorption by the powder X-ray diffraction (XRD) and by the sample controlled thermal analysis (SCTA).  相似文献   

6.
In this paper, a novel diamine ligand of 2-(pyridin-2-yl)-5-p-tolyl-1.3.4-oxadiazole (PTO) and its corresponding Cu(I) complex of [Cu(PTO)(PPh3)2]BF4 with triphenylphosphine (PPh3) as the auxiliary ligand are synthesized. Single crystal analysis confirms its identity. Its photophysical properties, including UV–vis absorption, emission spectrum, and luminescence decay dynamics, are measured and studied. The room temperature luminescence is a yellow one with long excited state lifetime of 64.4 μs under pure nitrogen atmosphere. Combined with density functional calculation on the cation of the Cu(I) complex, the yellow emission is assigned as a phosphorescent character of metal-to-ligand-charge-transfer, whose excited state is expected to be sensitive towards molecular oxygen. [Cu(PTO)(PPh3)2]BF4 is then doped into a silica supporting matrix of MCM-41 to construct an oxygen-sensitive probe of [Cu(PTO)(PPh3)2]BF4/MCM-41, which shows a maximum sensitivity (luminescence intensity in O2 medium/intensity in N2 medium) of 5.95 towards oxygen with short response time of 10 s. This sensing system shows a good photodurability upon continuous excitation radiation.  相似文献   

7.
Several functionalized mesoporous silicas (MCM-41 and SBA-15 terminated with amino groups by multistep graft) are prepared and used as carriers for platinum nanoparticles. Modification of the grafted molecules is investigated on the component of the silicas and the formation of nanoparticles. Catalytic performance of the loaded platinum nanocatalysts is tested on selective hydrogenation of ortho-chloronitrobenzene (o-CNB). Results indicate that SBA-15 can be grafted with more amino groups than MCM-41. In most cases, small quantity of platinum precursor benefits the formation of small platinum nanoparticles on the functionalized silicas. The platinum nanocatalysts loaded on the one-step grafted silicas hold better catalytic activity and slightly lower selectivity to ortho-chloroaniline (o-CAN) than those loaded on the two-step grafted silicas. Besides the advantage of reuse, the loaded platinum catalysts on the functionalized silicas have similar catalytic property as the colloidal platinum nanocatalysts.  相似文献   

8.
In this paper, we synthesize a novel diamine ligand of 4,7-dinonadecyl-1,10-phenanthroline (DN-Phen) with two long alkyl chain arms serving as a shield and its corresponding dinuclear Re(I) complex of Re2(CO)6(bpy)(DN-Phen)2 (bpy=4,4′-bipyridine), aiming at an optical sensor immune to the surrounding interferences. Its geometric and electronic structures are investigated, which suggest that the introduced long alkyl chains act as a shield for the excited state of emissive center. The promising photophysical parameters of Re2(CO)6(bpy)(DN-Phen)2, including the immunity of emission towards the surrounding interferences and long excited state lifetime, make itself a potential probe for oxygen detection. By doping Re2(CO)6(bpy)(DN-Phen)2 into two silica matrixes of MCM-41 and SBA-15, oxygen sensing performances of the resulted composite materials are investigated. Finally, a high sensitivity of 20.1 is realized, with short response/recovery time of 8 s/42 s. Here, sensitivity is defined as the ratio of emission maximum under pure nitrogen to emission minimum under pure oxygen, response and recovery times are the times for a sample to lose (response time) or recover (recovery time) 95% of its emission maximum upon periodically changed atmosphere.  相似文献   

9.
The preparation and oxygen sensing properties of optical materials based on two trinuclear starburst ruthenium(II) complexes: [Ru3(bpy)6(TMMB)]6+ (1) and [Ru3(phen)6(TMMB)]6+ (2) (bpy=2,2′-bpyridine, phen=1,10-phenathroline, TMMB=1,3,5-tris[2-(2′-pyridyl)benzimidazoyl]methylbenzene) assembled in two mesoporous silicate (MS) are described in this paper. The luminescence of Ru complexes/silicate assemble materials can be quenched by molecular oxygen with good sensitivity (I0/I1>5 for 2/MS and I0/I1>3 for 1/MS), indicating that trinuclear starburst Ru(II) complexes/MS systems are sensitive to oxygen molecules.  相似文献   

10.
Ionic liquid-functionalized alumino-silicate MCM-41 hybrid mesoporous materials have been synthesized with two-step approach, by means of in situ skeleton doping with aluminium and post surface grafting with N-methylimidazole ionic liquid groups. The samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), N2 adsorption-desorption, Fourier transform infrared (FTIR) spectra, 27Al and 13C MAS NMR spectra and temperature-programmed desorption (TPD) of NH3. The results indicated that the bifunctionalized MCM-41 possessed ordered mesostructure. Aluminium was efficiently introduced into the framework of the mesostructure, generating Lewis and Brönsted acid sites. N-methylimidazole ionic liquid groups were covalently grafted onto the surface of mesoporous materials. The as-synthesized bifunctional MCM-41 showed good catalytic performance in the coupling reaction of CO2 and propylene oxide.  相似文献   

11.
In this paper, a novel luminescent organic-inorganic hybrid material containing covalently bonded ternary europium complex in mesoporous silica MCM-41 has been successfully prepared by co-condensation of tetrethoxysilane (TEOS) and the modified ligand 2-phenyl-1H-imidazo[4,5-f][1,10]phen-3-(triethoxysilyl)propylcarbamate (PIP-Si) in the presence of cetyltrimethylammonium bromide (CTAB) surfactant as template. PIP-Si containing 1,10-phenanthroline covalently grafted to 3-(triethoxysilyl)propyl isocyanate is used not only as a precursor but also as the second ligand for Eu(TTA)3·2H2O (TTA: 2-thenoyltrifluoroacetate) complex to prepare a novel functionalized mesoporous material. The resulted mesoporous composite materials, which demonstrate strong characteristic emission lines of Eu3+5D0-7FJ (J=0, 1, 2, 3, 4), were characterized by Fourier transform infrared (FT-IR), small-angle X-ray diffraction, excited-state decay analysis. Emission intensity of the Eu(III) complex covalently linked to MCM-41 (Eu-MCM-41) increases with the increasing irradiation time, demonstrating better photostability compared with both pure Eu(III) complex and physically incorporated sample.  相似文献   

12.
Journal of Nanoparticle Research - In modern methods of synthesis of nanostructured materials based on mesoporous silica matrices (MCM-41, SBA-15), it is not possible to simultaneously fine adjust...  相似文献   

13.
The high data point density measurements of 1H→11B cross-polarization (CP) kinetics upon magic-angle spinning (MAS) of [bmim][BF4] confined in mesoporous SBA-15 and MCM-41 were carried out. The complex shaped 11B CP MAS signals were observed in both silica and decomposed into two Lorentz components. This points towards the possibility of bimodal distribution of [bmim][BF4] in the studied confinements. The convergence of classical and non-classical spin coupling models was deduced processing CP kinetic curves. A good fit of the theoretical curves to the experimental data was achieved using both models without any non-random deviations between theory and experiment to appear. The convergence of spin coupling models was discussed in terms of relatively high mobility of BF4 ? anion respect to the cation and the dynamics of anions in pores. These factors delete the borders between spin clusters. The spin diffusion along the pore surfaces in MCM-41 is more than twice faster than in SBA-15.  相似文献   

14.
A series of highly ordered mesoporous materials (CF-SBA-15) with heat-resistant magnetism have been successfully prepared from impregnation of cobalt salt, iron salt, and citric acid with as-synthesized SBA-15. XRD and N2 isotherms indicate that these materials have highly ordered hexagonal mesoporous symmetry and open pore systems. The measurement of magnetic property shows that these materials are ferromagnetic even if calcined at 550 °C for 10 h in air, indicating their good heat-resistant magnetism. These results would be very important for recycle and regeneration of adsorbents and catalysts in practical applications. Moreover, this method may be useful for other mesoporous materials with thermally stable magnetism from a combination of other mesoporous materials such as MCM-41 with magnetic nanoparticles of MnFe2O4 and NiFe2O4.  相似文献   

15.
The carbamoylphosphosphonate silane (CMPO analogue; 2-(diphenylphosphoryl)-N-(3-(triethoxysilyl)propyl) acetamide) modified mesoporous silica was prepared via a post-synthesis grafting method for the effective purification of rare earth elements. The guest CMPO analogue was synthesized by direct coupling reaction of 2-(diphenylphosphoryl) acetic acid and 3-(triethoxysilyl)propan-1-amine. Various mesoporous silicates such as MCM-41, SBA-15, or amorphous silica nanoparticles were adopted as host materials. The resulting surface-modified mesoporous materials were characterized with respect to their structural integrity, surface area, and pore size and the concentration of the CMPO silane species. These CMPO functionalized periodic mesostructured silicates offer the potential of applications as catalysts, sensors, or environmental sorbents.  相似文献   

16.
Three mesoporous molecular sieves loaded silicotungstic acids, named HSiW/SBA-15, HSiW/MCM-41, HSiW/MCM-48, were prepared and characterised by XRD, FT-IR, TEM and SEM. The catalytic performance of the prepared materials for the Baeyer-Villiger oxidation of cyclic ketones was carried out in the presence of 30%H2O2 under mild conditions. These loading materials were proved to be efficient and reusable catalysts, they all exhibited excellent catalytic performance for the Baeyer-Villiger oxidation of cyclic ketones with 30% H2O2 as oxidant. Many cyclic ketones were efficiently converted to the corresponding lactones with up to 90% conversions and high selectivities under the optimum reaction conditions.

Cyclic ketones were efficiently oxidised by mesoporous materials sopported silicotungstic acid to the corresponding lactones with 30%H2O2 as oxidant. All of the catalysts showed promising recyclability in the reactions.  相似文献   

17.
To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH3-SBA-15 (MS), NH2-SBA-15 (AS), and CH3/NH2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.  相似文献   

18.
Ordered hexagonal arrangement MCM-41 mesoporous molecular sieves were synthesized by the traditional hydrothermal method, and Fe-loaded MCM-41 mesoporous molecular sieves (Fe/MCM-41) were prepared by the wet impregnation method. Their mesoporous structures were testified by X-ray diffraction (XRD) and the N2 physical adsorption technique. Carbon nanotubes (CNTs) were synthesized by the chemical vapor deposition (CVD) method via the pyrolysis of ethanol at atmospheric pressure using Fe/MCM-41 as a catalytic template. The effect of different reaction temperatures ranging from 600 to 800 °C on the formation of CNTs was investigated. The resulting carbon materials were characterized by various physicochemical techniques such as transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The results show that multi-wall carbon nanotubes (MWCNTs) with an internal diameter of ca. 7.7 nm and an external diameter of ca. 16.9 nm were successfully obtained by the pyrolysis of ethanol at 800 °C utilizing Fe/MCM-41 as a catalytic template.  相似文献   

19.
Different concentrations of Ho3+-doped lead borate titanate aluminum fluoride (LBTAFHo) glasses with chemical composition of PbO-H3BO3-TiO2-AlF3-Ho2O3 were prepared by the melt quenching method. The spectral properties were investigated using the absorption, emission and decay measurements. The experimental oscillator strengths were calculated from the area under the absorption bands. Applying Judd-Ofelt theory, the intensity parameters (Ωλ=2, 4, 6) were calculated, by the least square fit approach from which the radiative transition rates, luminescence branching ratios and radiative decay times were determined. The photoluminescence spectra revealed the quenching of luminescence intensity beyond 1.0 mol% of Ho3+ ion concentration. To investigate the luminescence potentiality of 5F45I8 emission level, the effective bandwidth and the stimulated emission cross-section were determined. The quenching in experimental decay time is attributed to the resonance energy transfer among the excited Ho3+ ions.  相似文献   

20.
Using cetyltrimethyl ammonium bromide (CTAB) as the template and sodium silicate as the silicon source, the MCM-41 mesoporous molecular sieves with Eu incorporated in the framework were synthesized under microwave irradiation condition and the influence of the Si/Eu molar ratio on the crystalline structure, textural properties and the long-range ordering of the resulting sample was investigated by various physicochemical techniques such as X-ray diffraction (XRD), transmission electron microscope (TEM), diffuse reflectance ultraviolet-visible spectroscopy (UV-vis), thermal gravimetric-differential scanning calorimeter (TG-DSC) and N2 physical adsorption. The results of N2 adsorption and XRD reveal that the synthesized sample has the ordered hexagonal mesoporous structure. UV-vis spectra provide the strong evidences that most of europium ions were incorporated into the framework of the MCM-41 sample. The crystalline structure, textural properties and mesoporous ordering of the resultant mesoporous materials are related to the amount of europium incorporation. Small amount europium incorporated into the silica-based MCM-41 does not strongly modify the structure of mesoporous molecular sieve. An increase of the Eu content in sample led to reduction of the specific surface area and the deterioration of the long-range ordering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号