首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Current Applied Physics》2020,20(5):703-706
We investigated the photoluminescence (PL) characteristics of MoS2–Au hybrid nanostructures, fabricated by nanosphere lithography and wet-transfer techniques. Two kinds of Au nanostructures - such as nanotriangles (NTs) and nanoholes (NHs) - were fabricated for comparison. MoS2 monolayers on both NT and NH arrays exhibited enhanced PL intensity, compared with those on SiO2/Si substrates and flat Au thin films. Numerical simulations revealed clear distinction in the electric field intensity distributions in the NT and NH arrays at the PL excitation wavelength. Such difference could be attributed to the excitation of localized and propagating surface plasmon in the NT and NH arrays. This work helps us to understand how the plasmonic NT and NH arrays affect the physical properties of the MoS2 monolayers on them.  相似文献   

2.
《Current Applied Physics》2015,15(9):1090-1094
We fabricated organic photovoltaic (OPV) devices containing various Au nanostructures mixed with hole-collecting buffer layer. The presence of the Au nanostructures results in enhancement of the external quantum efficiencies (EQE) at dissimilar wavelengths of visible light, which can be attributed to the modulated plasmonic absorption frequency of the Au nanostructures. In addition to this plasmonic effect induced by visible light absorption, an increase in the EQE was also found upon UV excitation, which can be attributed to scattering effects induced by Au particles. The optical response pattern of organic photovoltaic devices can be modulated in a wide range of visible and UV wavelengths, by controlling sizes and shapes of the Au nanostructures.  相似文献   

3.
Linearly-polarized infrared (1.06 μm) laser light with intensities ranging from 5.3 to 97 mW/cm2 has been used to obtain anisotropically luminescent porous silicon (PSi) layers by photoanodic etching in a hydrofluoric acid solution. Remarkably large photoluminescence (PL) anisotropy has been observed in samples prepared with the highest illumination intensity. These samples show very low degrees of linear polarization when the PL excitation light is polarized parallel to the polarization direction of the etching light. When the excitation light is polarized perpendicular to that, we obtain usual degrees of linear polarization of several percent. This result indicates that anisotropic Si nanostructures in PSi layers can be made isotropic with high orientation selectivity by the polarized-light assisted technique. A simple two-dimensional model is presented to explain the observed prominent anisotropy.  相似文献   

4.
We designed and fabricated a spiral plasmonic lens (PL) with multi-circular grooves to increase light intensity in a farfield region via the constructive interference of the light scattered by the multi-circular grooves. To compare the beam focusing characteristics of a spiral PL with multi-circular grooves with those of a conventional spiral PL, we simulated the electric field distribution of the PLs operating at a 405 nm wavelength. We confirmed that the light intensity increased about twofold at 0.75 μm above the PL surface owing to the effect of the multi-circular grooves. Furthermore, the circular grooves negligibly affect the full width at half-maximum of the focal spot, keeping the subwavelength size (~200 nm) of incident light.  相似文献   

5.
李山  钟明亮  张礼杰  熊祖洪  张中月 《物理学报》2011,60(8):87806-087806
空心方形纳米结构能够激发更大面积的增强电场,故其可以作为衬底用于表面增强拉曼散射.应用离散偶极子近似算法研究了空心方形银纳米结构的消光光谱及其近场电场分布与入射光偏振方向之间的关系.研究表明,空心方形银纳米结构的表面等离子体共振峰不随入射光偏振方向的改变而移动,但是其表面增强电场分布却强烈地依赖于入射光的偏振方向.另外,还讨论了空心方形银纳米结构间的耦合作用对其表面等离子体共振模式的影响.结果发现,可以通过调节结构间的距离来改变结构间的耦合作用,同时改变了表面等离子体共振峰的位置.这些结果将为理解闭合纳米 关键词: 空心方形银纳米结构 表面等离子体 偏振 电场耦合  相似文献   

6.
张崇磊  辛自强  闵长俊  袁小聪 《物理学报》2017,66(14):148701-148701
结构光照明显微成像技术(SIM)因其高分辨、宽场、快速成像的优势,在生物医学成像领域发挥了不可估量的作用.结构光照明显微成像技术与动态可控的亚波长表面等离激元条纹相结合,可以在不借助非线性效应的情况下,将传统SIM的分辨率从2倍于衍射极限频率提升到3 4倍,此外还有抑制背景噪声、提升信噪比的能力,在近表面的生物医学成像应用中有重要价值.本文介绍了表面等离激元结构光照明显微成像技术的原理,并总结了近几年国内外的相关研究进展.  相似文献   

7.
王培培  杨超杰  李洁  唐鹏  林峰  朱星 《物理学报》2013,62(16):167302-167302
金属薄膜上制备的表面等离激元颜色滤波器具有很强的颜色可调性. 在200 nm厚的金膜上, 通过聚焦离子束刻蚀, 制备一系列周期逐渐变化的圆形、方形、矩形亚波长尺寸小孔方阵列表面等离激元颜色滤波器, 改变入射光的偏振方向, 观察其超透射滤波现象. 研究发现: 对于矩形小孔阵列, 其透射光颜色随入射光偏振方向的变化而改变; 而对于圆形、方形的小孔阵列, 其透射光颜色对入射光的偏振方向并不敏感. 分析表明, 对于金膜上刻蚀的小孔结构, 虽然结构的周期性导致的表面等离激元极化子会对透射光的颜色变化产生一定影响, 但是随小孔形状变化的局域表面等离激元共振才是影响透射光颜色的决定性因素. 如果入射光没有在小孔中激发出局域表面等离激元, 则表面等离激元极化子对透射光的影响也会消失. 根据不同形状小孔周期结构透射光颜色随入射光的偏振变化特点, 制备出了包含两种小孔形状的复合周期结构. 随着入射光偏振方向的改变, 该结构会显示出不同的颜色图案. 关键词: 表面等离激元极化子 局域表面等离激元 颜色滤波器 亚波长小孔阵列  相似文献   

8.
表面增强拉曼散射(SERS)很大程度的弥补了拉曼散射强度弱的缺点,迅速成为科研工作者们的研究热点,在食品安全、环境污染、毒品以及爆炸物检测等领域应用广泛。纳米技术的发展使得目前对于SERS的研究主要集中于金属纳米颗粒基底的制备,金属纳米粒子的种类、尺寸及形貌对SERS增强和吸收峰峰位均有影响,要获得好的增强效果,需要对金属纳米结构进行工艺优化。特别是,需要结合金属纳米粒子的结构和激励光波长,以期获得更好的增强效果。为了研究SERS增强和吸收峰之间的关系,开展了具有双共振吸收峰的金属纳米粒子的研究。首先利用FDTD Solutions仿真建模,主要针对金纳米颗粒直径、金纳米棒长径比及分布状态对共振吸收峰进行仿真,得到金纳米球理论直径在50 nm左右,金纳米棒理论长径比在3.5~4.5左右时,吸收峰分别分布在532及785 nm附近,符合多波段激励光拉曼增强条件;对于激励光偏振方向,其沿金纳米棒长轴方向偏振时吸收峰位于785 nm附近,沿金纳米球短轴方向偏振时吸收峰位于532 nm附近。然后采用种子生长法,制备了可用于多种波长激励光的双吸收峰表面增强拉曼散射基底。通过改变硝酸银用量(5,10,20,30和40 μL)、盐酸用量(0.1和0.2 mL)以及其生长时间(15,17,21和23 h)等多种工艺参数来控制金纳米棒含量,得到了同时含有金纳米球及金纳米棒的双吸收共振峰金纳米粒子。最后用该样品作为基底,罗丹明6G(R6G)作为探针分子,分别测试其在532,633和785 nm激励光入射时的SERS表征,对分析物R6G最低检测浓度均达到了10-7 mol·L-1,增强因子达到了~105,满足了多波段SERS检测的需要。  相似文献   

9.
In this paper, the enhanced optical transmission through a special type of aperture of a bowtie shape is investigated through near-field imaging and finite-difference numerical analysis. Under linear polarizations in two orthogonal directions, the optical near fields of the bowtie aperture and comparable square and rectangular apertures made in gold and chromium thin films are measured and compared. The bowtie aperture is able to provide a nanometer-sized optical spot when the incident light is polarized across the bowtie gap and delivers a considerable amount of light. Localized surface plasmons are clearly observed in the near-field images for both bowtie and rectangular apertures in gold, but invisible in chromium. Finite-difference time-domain calculations reveal that, depending on the polarization of the incident light, the unique optical properties of the bowtie aperture are a result of either the optical waveguide and the coupled surface plasmon polariton modes existing in the bowtie gap or the coupling between the two open arms of the bowtie aperture. PACS 81.07.-b; 07.79.Fc; 71.36.+c; 78.66.Bz; 42.79.Gn; 42.79.Vb  相似文献   

10.
An ensemble of InAs quantum dots with ground state transition energies centered at 1.216 eV and density 1011dots/cm2 has been studied by time-resolved photoluminescence (PL). The wavelength of the 100-fs excitation pulse was tuned through the ground (excited) state transitions, resulting in resonant (optical phonon sideband) PL. The decay of the PL was time resolved with a streak camera in the interval 1.5–3 ns to avoid scattered laser light. The intensity of the PL was recorded with its polarization both parallel with and perpendicular to the excitation polarization (along one of the crystal’s cleave axes); the ratio is 2.22 at low temperatures and low excitation. A phenomenological rate equation analysis is made, separating the excitations into two classes, one polarized along the excitation polarization and the other unpolarized (either that way immediately after the excitation pulse or scattered from the first class). Excellent fits to the data lead to the conclusion that both classes decay radiatively with a lifetime of 1 ns, and a transfer from the polarized to the unpolarized species takes place with a distribution time of 12 ns at low temperatures and low excitation, dropping rapidly toward zero for temperatures above 30 K and for intense excitation levels. The polarization of a coherently excited ground state exciton should dephase with a rate equal to the sum of the radiative rate plus the inverse of this distribution time.  相似文献   

11.
We present the fabrication of nanostructures ablated on silicon(100) by the plasmonic scattering of 780 nm, 220 fs laser pulses in the near-field of gold nanospheres. We take advantage of the enhanced plasmonic scattering of ultrashort laser light in the particle near-field to ablate well-defined nanocraters. Gold nanospheres of 150 nm diameter are deposited onto a silicon surface and irradiated with a single laser pulse. We studied the effect of laser polarization on the morphology of ablated nanostructures and estimated the minimum fluence for plasmonic nanoablation. When the polarization of the incident radiation is directed at a 45° angle into the substrate surface, a near-field enhancement of 23.1±7.6 is measured, reducing the required silicon ablation fluence from 191±14 mJ/cm2 to 8.2±2.9 mJ/cm2. Enhancements are also measured for laser polarizations parallel to the substrate surface when the substrate is angled 0° and 45° to the incident irradiation, giving enhancements of 6.9±0.6 and 4.1±1.3, respectively. Generated nanocrater morphologies show a direct imprint of the particle dipolar scattering region, as predicted in our theoretical calculations. The measured near-field enhancement values agree well with the maximum field enhancements obtained in our calculations. The agreement between theory and measurements supports that the nanocraters are indeed formed by the enhanced plasmonic scattering in the near-field of the nanoparticles. PACS 42.62.-b; 52.38.Mf; 81.65.Cf; 81.16.-c; 78.67.Bf  相似文献   

12.
Metallic bowtie nanoantennas should provide optical fields that are confined to spatial scales far below the diffraction limit. To improve the mismatch between optical wavelengths and nanoscale objects, we have lithographically fabricated Au bowties with lengths approximately 75 nm and gaps of tens of nm. Using two-photon-excited photoluminescence of Au, the local intensity enhancement factor relative to that for the incident diffraction-limited beam has been experimentally determined for the first time. Enhancements >10(3) occur for 20 nm gap bowties, in good agreement with theoretical simulations.  相似文献   

13.
We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene(DVDGr)and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with pure and mixed noble/transition-metal nanoarrays can produce a stronger light absorption due to the coherent resonance of plasmons than graphene nanostructures. Comparing with the mixed Au/Pd nanoarrays, pure Au nanoarrays have stronger plasmonic enhancement. Furthermore, harmonics from the hybrid nanostructures exposed to the combination of lasers ranged from ultraviolet to infrared and a controlling pulse are investigated theoretically. The harmonic plateau can be broadened significantly and the energy of harmonic spectra is dramatically extended by the controlling pulse. Thus, it is possible to tune the width and intensity of harmonic spectrum to achieve broadband absorption of radiation. The methodology described here not only improves the understanding of the surface plasmon effect used in a DVDGr-metal optoelectronic device but also may be applicable to different optical technologies.  相似文献   

14.
在线偏振飞秒激光激发下, 菌紫质通过双光子光化学反应可以生成具有永久光致各向异性的蓝移产物F540态. 基于F540态的永久光致各向异性, 通过调控飞秒激光空间光场分布, 可以在菌紫质薄膜中实现永久光信息存储. 本文使用纯相位型空间光调制器调制飞秒激光光场, 在物镜焦平面上生成光学点阵图案, 可以将信息快速记录在菌紫质薄膜中. 同时, 通过改变入射激光偏振方向, 可以实现偏振复用光存储, 这在高密度光存储和数据加密领域具有潜在应用.  相似文献   

15.
Photoluminescence(PL) from bulk noble metals arises from the interband transition of bound electrons. Plasmonic nanostructures can greatly enhance the quantum yield of noble metals through the localized surface plasmon. In this work,we briefly review recent progress on the phenomenon, mechanism, and application of one-photon PL from plasmonic nanostructures. Particularly, our recent efforts in the study of the PL peak position, partial depolarization, and mode selection from plasmonic nanostructures can bring about a relatively complete and deep understanding of the physical mechanism of one-photon PL from plasmonic nanostructures, paving the way for future applications in plasmonic imaging,plasmonic nanolasing, and surface enhanced fluorescence spectra.  相似文献   

16.
Metallic bowtie antennas are used in nanophotonics applications in order to confine the electromagnetic field into volumes much smaller than that of the incident wavelength. Electrically controllable carrier concentration of graphene opens the door to the use of plasmonic nanoantenna structures with graphene so that the resonant nature of nanoantennas can be tuned. In this study, we demonstrated with the Fourier transform infrared (FTIR) spectroscopy and the Finite Difference Time Domain (FDTD) method that the intensity and resonance peak of bowtie nanoantennas on monolayer graphene can be tuned at mid-infrared (MIR) wavelength regime by applying a gate voltage, since the optical properties of graphene change by changing the carrier concentration.  相似文献   

17.
贵金属纳米材料在入射光激发下能够产生表面等离激元,即金属表面自由电子产生集体振荡。当其振荡频率与入射光频率相同时,发生表面等离激元共振,形成一种特殊的电磁场模式和光谱特性。利用该电磁场模式和光谱特性, 能够调节金属纳米材料的光谱学行为,例如通过改变金属纳米结构的大小、形状以及周围介质介电常数等参数, 在微纳尺度上实现光谱学信号的有效调控。目前,除了具有一定对称性的贵金属纳米材料被大量研究和应用外,非对称纳米结构的表面等离激元光谱特性也受到广泛关注。研究表明,在可见-近红外波段光谱范围内设计表面等离激元光电传感器件的关键问题在于,如何有效地调节其消光谱的共振波长、半峰宽以及峰值强度等主要特征参数。提出一种基于银纳米双环组成的非对称结构,利用时域有限差分方法,在可见-近红外波段内,通过分别改变银纳米双环的尺寸、间距及入射光偏振方向等参数,计算了该纳米结构在不同条件下的消光谱。结果表明,在0.4~3 μm的消光谱内,入射光能够激发产生两个独立的表面等离激元共振峰。通过研究峰值波长处的电场分布图发现,上述共振峰分别对应两种不同的电磁场模式。结果还表明,消光谱内两个独立的共振峰可以通过改变该双环结构的不同参数,被分别地进行调节。其中,可以通过改变该双环结构的半径来有效调节短波长峰的共振波长和半峰宽,同时保持长波长峰的共振波长和半峰宽基本不变。此外,通过改变两环间距或入射光偏振方向,可以分别以不同趋势来调节两个共振峰的峰值强度。在提出的非对称银纳米双环的消光谱中,获得了能够被分别调节的两个表面等离激元共振峰,研究结果能够为可见-近红外波段内基于银纳米材料光电传感器件的开发设计提供理论基础。  相似文献   

18.
通过水热法在溅射了一层金的Si片上生长了ZnO纳米棒。实验观察到ZnO纳米棒的室温光致发光谱中出现了强的紫外发射峰,同时还伴随有弱的缺陷相关的发射,这表明通过该种方法生长的ZnO纳米棒晶体质量较好。同时,通过光泵浦也观察到了ZnO纳米棒中的激光发射。当激发光功率密度超过阈值,且进一步增加时则出现多个发射峰,其积分强度随着激发功率密度的增大呈非线性增长,进一步表明存在受激发射。利用金属层作为反射镜可以进一步降低损耗,从而达到降低阈值的目的。  相似文献   

19.
Miao X  Lin LY 《Optics letters》2007,32(3):295-297
A new approach is proposed for manipulating and rotating micro- or nano-objects by using polarized laser light with low intensity. The polarized light excites resonant dipoles on a cap-shaped Au nanoparticle array, which generates a highly nonuniform radiation field that induces large dielectrophoresis force on dielectric objects. The orientation control of the objects is realized by adjusting the polarization direction of the incident light. Theoretical modeling, fabrication, and characterization results for the cap-shaped Au nanoparticle array, as well as preliminary trapping results, are reported.  相似文献   

20.
Nanoparticles (NPs) and surface nanostructures (NS) are produced via laser ablation of a bulk gold target in liquid using second harmonics of 10 ps Nd:YAG laser (532 nm) with repetition rate of 50 kHz. The morphology and plasmon photoluminescence (PL) properties of obtained nanoscale objects are described. Transmission electron microscopy and field emission scanning electron microscopy are used for morphology characterization of NPs and NS, respectively. Plasmon PL of both gold NPs and NS is experimentally studied using the third harmonics of the Nd:YAG picosecond laser (355 nm) as a pump. The wavelength of intensity maximum of PL of Au NPs colloidal solution virtually coincides with the position of Au NPs plasmon absorption peak. Real-time excitation of both plasmon PL and Raman scattering of surrounding liquid by picosecond laser pulses in aqueous colloidal solution is also investigated. The efficient cross section of plasmon PL of Au NPs colloid is evaluated using Raman scattering of water as a comparative parameter. The results are in good agreement with values obtained in previous works. Plasmon PL from self-organized NS on the Au surface produced via laser ablation is observed for the first time. Its spectrum is compared to PL spectra of both aqueous colloidal solutions of NPs and of NPs deposited on a Si wafer. The obtained experimental data are discussed with reference to the band structure of bulk Au.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号