首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We establish propagation and spreading properties for nonnegative solutions of nonhomogeneous reaction-diffusion equations of the type:
tu−∇⋅(A(t,x)∇u)+q(t,x)⋅∇u=f(t,x,u)  相似文献   

2.
The aim of this paper is to investigate the behaviour as t of solutions to the Cauchy problem ut−△utvu−(b,u)=F(u),u(x,0)=u0(x), where v>0 is a fixed constant, t≥0, xΩ, Ω is a bounded domain in Rn. We will first establish an a priori estimate. Then, we establish the global existence, uniqueness and continuous dependence of the weak solution for the Sobolev-Galpern type equation with the Dirichlet boundary.  相似文献   

3.
By constructing different auxiliary functions and using Hopf’s maximum principle, the sufficient conditions for the blow-up and global solutions are presented for nonlinear parabolic equation ut = ∇(a(u)b(x)c(t)∇u) + f(xuqt) with different kinds of boundary conditions. The upper bounds of the “blow-up time” and the “upper estimates” of global solutions are provided. Finally, some examples are presented as the application of the obtained results.  相似文献   

4.
The blow-up of solutions to the PDE ψ(x)ut=[∇·A(x)∇+b(x)]um is studied via energy methods. The key step is a similarity transformation of the original unstable equation to a nonlocal stable one.  相似文献   

5.
The existence of local (in time) solutions of the initial-boundary value problem for the following degenerate parabolic equation: ut(x,t)−Δpu(x,t)−|u|q−2u(x,t)=f(x,t), (x,t)∈Ω×(0,T), where 2?p<q<+∞, Ω is a bounded domain in RN, is given and Δp denotes the so-called p-Laplacian defined by Δpu:=∇⋅(|∇u|p−2u), with initial data u0Lr(Ω) is proved under r>N(qp)/p without imposing any smallness on u0 and f. To this end, the above problem is reduced into the Cauchy problem for an evolution equation governed by the difference of two subdifferential operators in a reflexive Banach space, and the theory of subdifferential operators and potential well method are employed to establish energy estimates. Particularly, Lr-estimates of solutions play a crucial role to construct a time-local solution and reveal the dependence of the time interval [0,T0] in which the problem admits a solution. More precisely, T0 depends only on Lr|u0| and f.  相似文献   

6.
We discuss the existence of periodic solutions to the wave equation with variable coefficients utt−div(A(x)∇u)+ρ(x,ut)=f(x,t) with Dirichlet boundary condition. Here ρ(x,v) is a function like ρ(x,v)=a(x)g(v) with g(v)?0 where a(x) is nonnegative, being positive only in a neighborhood of a part of the domain.  相似文献   

7.
We study the convergence and decay rate to equilibrium of bounded solutions of the quasilinear parabolic equation
ut−diva(x,∇u)+f(x,u)=0  相似文献   

8.
The authors discuss the quasilinear parabolic equation ut=∇⋅(g(u)∇u)+h(u,∇u)+f(u) with u|Ω=0, u(x,0)=?(x). If f, g and h are polynomials with proper degrees and proper coefficients, they show that the blowup property only depends on the first eigenvalue of −Δ in Ω with Dirichlet boundary condition. For a special case, they obtain a sharp result.  相似文献   

9.
The authors of this paper study the Dirichlet problem of the following equation
ut−div(|u|ν(x,t)u)=f−|u|p(x,t)−1u.  相似文献   

10.
The gradient blowup of the equation ut = Δu + a(x)|∇u|p + h(x), where p > 2, is studied. It is shown that the gradient blowup rate will never match that of the self-similar variables. The exact blowup rate for radial solutions is established under the assumptions on the initial data so that the solution is monotonically increasing in time.  相似文献   

11.
We study the 3×3 elliptic systems ∇(a(x)∇×u)−∇(b(x)∇⋅u)=f, where the coefficients a(x) and b(x) are positive scalar functions that are measurable and bounded away from zero and infinity. We prove that weak solutions of the above system are Hölder continuous under some minimal conditions on the inhomogeneous term f. We also present some applications and discuss several related topics including estimates of the Green?s functions and the heat kernels of the above systems.  相似文献   

12.
The purpose of this paper is to prove the existence of a unique classical solution u(x) to the quasilinear elliptic equation −∇⋅(a(u)∇u)+v⋅∇u=f, where u(x0)=u0 at x0Ω and where n⋅∇u=g on the boundary ∂Ω. We prove that if the functions a, f, v, g satisfy certain conditions, then a unique classical solution u(x) exists. Applications include stationary heat/diffusion problems with convection and with a source/sink, where the value of the solution is known at a spatial location x0Ω, and where n⋅∇u is known on the boundary.  相似文献   

13.
We consider the Cauchy problem for a single conservation law in several space variables. Letting u(x, t) denote the solution with initial data u0, we state necessary and sufficient conditions on u0 so that u(x, t) is locally Lipschitz continuous in the half space {t > 0}. These conditions allow for the preservation of smoothness of u0 as well as for the smooth resolution of discontinuities in u0. One consequence of our result is that u(x, t) cannot be locally Lipschitz unless u0 has locally bounded variation. Another is that solutions which are bounded and locally Lipschitz continuous in {t > 0} automatically have boundary values u0 at t = 0 in the sense that u(·, t) → u0 in Lloc1. Finally, we give an elementary proof that locally Lipschitz solutions satisfy Kruzkov's uniqueness condition.  相似文献   

14.
In this paper we consider the Cauchy problem for the equation ∂u/∂t + uu/∂x + u/x = 0 for x > 0, t ⩾ 0, with u(x, 0) = u0(x) for x < x0, u(x, 0) = u0+(x) for x > x0, u0(x0) > u0+(x0). Following the ideas of Majda, 1984 and Lax, 1973, we construct, for smooth u0 and u0+, a global shock front weak solution u(x, t) = u(x, t) for x < ϕ(t), u(x, t) = u+(x, t) for x > ϕ(t), where u and u+ are the strong solutions corresponding (respectively) to u0 and u0+ and the curve t → ϕ(t) is defined by dϕ/dt (t) = 1/2[u(ϕ(t), t) + u+(ϕ(t), t)], t ⩾ 0 and ϕ(0) = x0. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

15.
In this paper we study the boundary behavior of solutions to equations of the form
∇⋅A(x,∇u)+B(x,∇u)=0,  相似文献   

16.
We investigate the existence of nonnegative weak solutions to the problem ut=Δ(um)−p|∇u| in Rn×(0,∞) with +(1−2/n)<m<1. It will be proved that: (i) When 1<p<2, if the initial datum u0D(Rn) then there exists a solution; (ii) When 1<p<(2+mn)/(n+1), if the initial datum u0(x) is a bounded and nonnegative measure then the solution exists; (iii) When (2+mn)/(n+1)?p<2, if the initial datum is a Dirac mass then the solution does not exist. We also study the large time behavior of the L1-norm of solutions for 1<p?(2+mn)/(n+1), and the large time behavior of t1/βu(⋅,t)−Ec(⋅,t)L for (2+mn)/(n+1)<p<2.  相似文献   

17.
This paper is concerned with the construction of accurate continuous numerical solutions for partial self-adjoint differential systems of the type (P(t) ut)t = Q(t)uxx, u(0, t) = u(d, t) = 0, u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ xd, t >- 0, where P(t), Q(t) are positive definite oRr×r-valued functions such that P′(t) and Q′(t) are simultaneously semidefinite (positive or negative) for all t ≥ 0. First, an exact theoretical series solution of the problem is obtained using a separation of variables technique. After appropriate truncation strategy and the numerical solution of certain matrix differential initial value problems the following question is addressed. Given T > 0 and an admissible error ϵ > 0 how to construct a continuous numerical solution whose error with respect to the exact series solution is smaller than ϵ, uniformly in D(T) = {(x, t); 0 ≤ xd, 0 ≤ tT}. Uniqueness of solutions is also studied.  相似文献   

18.
This paper extends a result of Fujita [On the blowing up of solutions to the Cauchy problem for ut = Δu + u1 + a, J. Faculty Science, U. of Tokyo 13 (1966), 109–124] to show that solutions u = u(t, x) for t > 0 and x?R2 to the equation ut = Δu + u2 with u(0, x) = a(x) must grow at a rate faster than exp(∥x2) at some finite time t, as long as a(x) is nonnegative and not almost everywhere zero.  相似文献   

19.
For the 1+1-dimensional nonlinear diffusion equations with x-dependent convection and source terms ut=(D(u)ux)x+Q(x,u)ux+P(x,u), we obtain conditions under which the equations admit the second-order generalized conditional symmetries η(x,u)=uxx+H(u)ux2+G(x,u)ux+F(x,u) and the first-order sign-invariants J(x,u)=utA(u)ux2B(x,u)uxC(x,u) on the solutions u(x,t). Several different generalized conditional symmetries and first-order sign-invariants for equations in which the diffusion term offers different possibilities (power-law, exponential, Mullin, Fujita) are presented. Exact solutions to the resulting equations corresponding to the generalized conditional symmetries and the first-order sign-invariants are constructed.  相似文献   

20.
This paper deals with a class of degenerate quasilinear elliptic equations of the form −div(a(x,u,u)=g−div(f), where a(x,u,u) is allowed to be degenerate with the unknown u. We prove existence of bounded solutions under some hypothesis on f and g. Moreover we prove that there exists a renormalized solution in the case where gL1(Ω) and f∈(Lp(Ω))N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号