首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The dislocation density tensor computed as the cud of plastic distortion is regarded as a new constitutive variable in crystal plasticity. The dependence of the free energy function on the dislocation density tensor is explored starting from a quadratic ansatz. Rank one and logarithmic dependencies are then envisaged based on considerations from the statistical theory of dislocations. The rele- vance of the presented free energy potentials is evaluated from the corresponding analytical solutions of the periodic two-phase laminate problem under shear where one layer is a single crystal material undergoing single slip and the second one remains purely elastic.  相似文献   

2.
3.
Classical elasticity is concerned with bodies that can be modeled as smooth manifolds endowed with a reference metric that represents local equilibrium distances between neighboring material elements. The elastic energy associated with the configuration of a body in classical elasticity is the sum of local contributions that arise from a discrepancy between the actual metric and the reference metric. In contrast, the modeling of defects in solids has traditionally involved extra structure on the material manifold, notably torsion to quantify the density of dislocations and non-metricity to represent the density of point defects. We show that all the classical defects can be described within the framework of classical elasticity using tensor fields that only assume a metric structure. Specifically, bodies with singular defects can be viewed as affine manifolds; both disclinations and dislocations are captured by the monodromy that maps curves that surround the loci of the defects into affine transformations. Finally, we showthat two dimensional defectswith trivial monodromy are purely local in the sense that if we remove from the manifold a compact set that contains the locus of the defect, the punctured manifold can be isometrically embedded in a Euclidean space.  相似文献   

4.
Based on a micromechanical concept of void growth and change in void shape, a dissipation potential and constitutive equations for ductile damage of metals are presented. Multiplicative decomposition of the metric transformation tensor and thermodynamic formulation of the constitutive equations lead to a symmetric second-order tensor of damage which is physically meaningful. Its first invariant defines the damage related to plastic dilatation of the material due to the void growth. The second invariant of the deviatoric tensor accounts for the damage associated with a change in the void shape. Two physically motivated normalized measures allow us to represent the kinetic process of strain-induced damage by using the equivalent parameter of damage including the limit conditions for the onset of void coalescence and ductile failure. An experimental analysis of the evolution of ductile damage is presented for the case of uniaxial tension of sheet steel specimens with artificial defects.  相似文献   

5.
6.
Here homogenization theory is used to establish a connection between the symmetries of a periodic elastic structure associated with the microscopic properties of an elastic material and the material symmetries of the effective, macroscopic elasticity tensor. Previous results of this type exist but here more general symmetries on the microscale are considered. Using an explicit example, we show that it is possible for a material to be fully anisotropic on the microscale and yet the symmetry group on the macroscale can contain elements other than plus or minus the identity. Another example demonstrates that not all material symmetries of the macroscopic elastic tensor are generated by symmetries of the periodic elastic structure.  相似文献   

7.
The present paper is concerned with the numerical modelling of the large elastic–plastic deformation behavior and localization prediction of ductile metals which are sensitive to hydrostatic stress and anisotropically damaged. The model is based on a generalized macroscopic theory within the framework of nonlinear continuum damage mechanics. The formulation relies on a multiplicative decomposition of the metric transformation tensor into elastic and damaged-plastic parts. Furthermore, undamaged configurations are introduced which are related to the damaged configurations via associated metric transformations which allow for the interpretation as damage tensors. Strain rates are shown to be additively decomposed into elastic, plastic and damage strain rate tensors. Moreover, based on the standard dissipative material approach the constitutive framework is completed by different stress tensors, a yield criterion and a separate damage condition as well as corresponding potential functions. The evolution laws for plastic and damage strain rates are discussed in some detail. Estimates of the stress and strain histories are obtained via an explicit integration procedure which employs an inelastic (damage-plastic) predictor followed by an elastic corrector step. Numerical simulations of the elastic–plastic deformation behavior of damaged solids demonstrate the efficiency of the formulation. A variety of large strain elastic–plastic-damage problems including severe localization is presented, and the influence of different model parameters on the deformation and localization prediction of ductile metals is discussed.  相似文献   

8.
9.
V. Kobelev 《Meccanica》2012,47(3):745-753
The article presents the Lagrangian of defects in the solids, equipped with bending and warp. The deformation of such elastic medium with defects is based on Riemann-Cartan geometry in three dimensional space. In the static theory for the media with dislocations and disclinations the possible choice of the geometric Lagrangian yield the equations of equilibrium. In this article, the assumed expression for the free energy leading is equal to a volume integral of the scalar function (the Lagrangian) that depends on metric and Ricci tensors only. In the linear elastic isotropic case the elastic potential is a quadratic function of the first and second invariants of strain and warp tensors with two Lame, two mixed and two bending constants. For the linear theory of homogeneous anisotropic elastic medium the elastic potential must be quadratic in warp and strain. The conditions of stability of media with defects are derived, such that the medium in its free state is stable. With the increasing strain the stability conditions could be violated. If the strain in material attains the critical value, the instability in form of emergence of new topological defects occurs. The medium undergoes the spontaneous symmetry breaking in form of emerging topological defects.  相似文献   

10.
Summary A formulation of isotropic thermoplasticity for arbitrary large elastic and plastic strains is presented. The underlying concept is the introduction of a metric transformation tensor which maps a locally defined six-dimensional plastic metric onto the metric of the current configuration. This mixed-variant tensor field provides a basis for the definition of a local isotropic hyperelastic stress response in the thermoplastic solid. Following this fundamental assumption, we derive a consistent internal variable formulation of thermoplasticity in a Lagrangian as well as a Eulerian geometric setting. On the numerical side, we discuss in detail an objective integration algorithm for the mixed-variant plastic flow rule. The special feature here is a new representation of the stress return and the algorithmic elastoplastic moduli in the eigenvalue space of the Eulerian plastic metric for plane problems. Furthermore, an algorithm for the solution of the coupled problem is formulated based on an operator split of the global field equations of thermoplasticity. The paper concludes with two representative numerical simulations of thermoplastic deformation processes.  相似文献   

11.
12.
增量型各向异性损伤理论与数值分析   总被引:6,自引:1,他引:5  
考虑到目前各向异性损伤理论存在一些不足,该文在增量型各向异性损伤理论的框架下,引入二阶对称张量,构造四阶对称有效损伤张量,建立了有效应力方程.类似于塑性流动分析方法,定义了增量弹性应力.应变关系.利用von Mises塑性屈服准则,并考虑各向异性损伤效应,推导出四阶对称的弹.塑性变形损伤刚度张量,其对称性反映了材料的固有特性.根据物体的变形和现时损伤状态,构造了材料损伤演化方程,方程中各项具有明确的物理意义.通过对A12024-T3金属薄板单向拉伸的有限元分析,确定了损伤演化参数,验证了损伤演化方程的正确性.此外还对含孔口薄板做有限元模拟,讨论了反力—位移曲线的变化规律以及它所揭示变形性质,给出了损伤场的分布规律。  相似文献   

13.
Under small strains and rotations, we apply a phenomenological higher-order theory of distortion gradient plasticity to the torsion problem, here assumed as a paradigmatic benchmark of small-scale plasticity. Peculiar of the studied theory, proposed about ten years ago by Morton E. Gurtin, is the constitutive inclusion of the plastic spin, affecting both the free energy and the dissipation. In particular, the part of the free energy, called the defect energy, which accounts for Geometrically Necessary Dislocations, is a function of Nye's dislocation density tensor, dependent on the plastic distortion, including the plastic spin. For the specific torsion problem, we implement this distortion gradient plasticity theory into a Finite Element (FE) code characterised by implicit (Backward Euler) time integration, numerically robust and accurate for both viscoplastic and rate-independent material responses. We show that, contrariwise to other higher-order theories of strain gradient plasticity (neglecting the plastic spin), the distortion gradient plasticity can predict some strengthening even if a quadratic defect energy is chosen. On the basis of the results of many FE analyses, concerned with (i) cyclic loading, (ii) switch in the higher-order boundary conditions during monotonic plastic loading, (iii) the use of non-quadratic defect energies, and (iv) the prediction of experimental data, we mainly show that (a) including the plastic spin contribution in a gradient plasticity theory is highly recommendable to model small-scale plasticity, (b) less-than-quadratic defect energies may help in describing the experimental results, but they may lead to anomalous cyclic behaviour, and (c) dissipative (unrecoverable) higher-order finite stresses are responsible for an unexpected mechanical response under non-proportional loading.  相似文献   

14.
The objective of this contribution is the formulation and algorithmic treatment of a phenomenological framework to capture anisotropic geometrically nonlinear inelasticity. We consider in particular the coupling of viscoplasticity with anisotropic continuum damage whereby both, proportional and kinematic hardening are taken into account. As a main advantage of the proposed formulation standard continuum damage models with respect to a fictitious isotropic configuration can be adopted and conveniently extended to anisotropic continuum damage. The key assumption is based on the introduction of a damage tangent map that acts as an affine pre-deformation. Conceptually speaking, we deal with an Euclidian space with respect to a non-constant metric. The evolution of this field is directly related to the degradation of the material and allows the modeling of specific classes of elastic anisotropy. In analogy to the damage mapping we introduce an internal variable that determines a back-stress tensor via a hyperelastic format and therefore enables the incorporation of plastic anisotropy. Several numerical examples underline the applicability of the proposed finite strain framework.  相似文献   

15.
16.
Growth (resp. atrophy) describes the physical processes by which a material of solid body increases (resp. decreases) its size by addition (resp. removal) of mass. In the present contribution, we propose a sound mathematical analysis of growth, relying on the decomposition of the geometric deformation tensor into the product of a growth tensor describing the local addition of material and an elastic tensor, which is characterizing the reorganization of the body. The Blatz-Co hyperelastic constitutive model is adopted for an isotropic body, satisfying convexity conditions (resp. concavity conditions) with respect to the transformation gradient (resp. temperature). The evolution law for the transplant is obtained from the natural assumption that the evolution of the material is independent of the reference frame. It involves a modified Eshelby tensor based on the specific free energy density. The heat flux is dependent upon the transplant. The model consists of the constitutive equation, the energy balance, and the evolution law for the transplant. It is completed by suitable boundary conditions for the displacement, temperature and transplant tensor. The existence of locally unique solutions is obtained, for sufficiently smooth data close to the stable equilibrium. The question of the global existence is examined in the simplified situation of quasistatic isothermal equations of linear elasticity under the assumption of isotropic growth.  相似文献   

17.
A method of estimating the latent elastic energy associated with the microinhomogeneity of the stress and plastic–strain fields inside the plastic zone localized near the tip of an opening–mode crack (Dugdale zone) under conditions of plane stresses is proposed. The microinhomogeneity of plastic flow upon small strain hardening is taken into account only in the form of considerable distortion of the geometry of the free surfaces of the plastic zone. The damage that developes because of release of the latent free energy is estimated depending on the magnitude of the crack opening.  相似文献   

18.
Metric anomalies arising from a distribution of point defects (intrinsic interstitials, vacancies, point stacking faults), thermal deformation, biological growth, etc. are well known sources of material inhomogeneity and internal stress. By emphasizing the geometric nature of such anomalies we seek their representations for materially uniform crystalline elastic solids. In particular, we introduce a quasi-plastic deformation framework where the multiplicative decomposition of the total deformation gradient into an elastic and a plastic deformation is established such that the plastic deformation is further decomposed multiplicatively in terms of a deformation due to dislocations and another due to metric anomalies. We discuss our work in the context of quasi-plastic strain formulation and Weyl geometry. We also derive a general form of metric anomalies which yield a zero stress field in the absence of other inhomogeneities and any external sources of stress.  相似文献   

19.
In [1] the author examined a macroscopically homogeneous elastic medium of simple structure with spatial dispersion. In that case the assumption of the existence of an elementary unit of length and long-range forces conditioned the nonlocalizability of the theory, and the macroscopic homogeneity was manifested in the invariance of the integral operators under shear (difference kernels).In this paper the more general model of an inhomogeneous elastic medium of simple structure with nonlocal interaction is constructed. In § 1 the existence of a symmetric stress tensor is proved with broad assumptions, and the corresponding operator Hooke's law is written down. As a corollary, the usual expression for the energy density is obtained. In §2 the case of point defects is considered. An explicit expression is found for the Green's tensor for a medium with point defects in terms of the Green's tensor for the homogeneous medium. With the help of the Green's tensor the self-energy of the defect and the energy of the interaction force are calculated.  相似文献   

20.
Deformation mappings are considered that correspond to the motions of lattice defects, elastic stretch and rotation of the lattice, and initial defect distributions. Intermediate (i.e., relaxed) configuration spaces associated with these deformation maps are identified and then classified from the differential-geometric point of view. A fundamental issue is the proper selection of coordinate systems and metric tensors in these configurations when such configurations are classified as anholonomic. The particular choice of a global, external Cartesian coordinate system and corresponding covariant identity tensor as a metric on an intermediate configuration space is shown to be a constitutive assumption often made regardless of the existence of geometrically necessary crystal defects associated with the anholonomicity (i.e., the non-Euclidean nature) of the space. Since the metric tensor on the anholonomic configuration emerges necessarily in the definitions of scalar products, certain transpose maps, tensorial symmetry operations, and Jacobian invariants, its selection should not be trivialized. Several alternative (i.e., non-Euclidean) representations proposed in the literature for the metric tensor on anholonomic spaces are critically examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号