首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The compatibility of poly(vinyl chloride) (PVC) with linear polyethers is examined over the entire composition range. This study examines blends with poly(methylene oxide) (PMO) and poly(ethylene oxide) (PEO) of medium (MMW) and high (HMW) molecular weight. The techniques used are dynamic mechanical analysis, DSC, and optical microscopy (phase contrast and polarizing). The results indicate that all polyethers show limited miscibility in the melt at high PVC contents. Proper analysis of the Tm data using the Kwei-Frisch and Hoffman-Weeks procedures allows the determination of the thermodynamic interaction parameter, which is found to be close to zero for all pairs of blends.  相似文献   

2.
The specific volume-temperature relationships of polystyrene, poly(2-chlorostyrene), and their polymer blends as well as the volume change of mixing Δvm of the blends were obtained in the liquid state by dilatometry. The equation of state parameter and the molecular parameter of each homopolymer and blends were determined according to the lattice fluid theory of Sanchez and Lacombe. The experimental Δvm obtained agreed quite well with that predicted from theory, and the enthalpy of mixing ΔHm was also predicted using the pair molecular parameter. These two values were negative, indicative of miscibility of polystyrene and poly(2-chlorostyrene) in the liquid state. The absolute values of Δvm and ΔHm were about twice those for polystyrene and poly(phenylene oxide) blend, suggesting a specific interaction between the two polymers.  相似文献   

3.
The miscibility of random copolymers of o-chlorostyrene and p-chlorostyrene [P (oClSt-co-pClSt)] with partially phenylsulfonylated poly (2,6-dimethyl-1,4-phenylene oxide) (SPPO) copolymers has been studied, using differential scanning calorimetry (DSC) to establish Tg behavior. It already has been established that the isomeric effect of the chlorine substitution on miscibility is large. Thus the para-chloro-substituted styrenic homopolymer is miscible with all SPPOs containing more than ~ 5 mol % phenylsulfonylation, whereas the ortho-chloro-substituted homopolymer is immiscible with the entire range of SPPO copolymer compositions (and also with the respective homopolymers). As a result of this asymmetric behavior of the homopolymers, the width of the window of miscibility in blends now investigated containing copolymers with high pClSt content and SPPO is much greater than in the corresponding blends containing copolymers with large mole fraction of oClSt. These differences are reflected in the corresponding χ parameters calculated from analysis of the data. It was also found that the miscibility is temperature dependent and that the regime in the copolymer-copolymer composition plane shrank as the equilibrium temperature increased, results indicative of LCST behavior. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Various methods of determining polymeric molecular compatibility were applied to blends of poly(vinyl chloride) (PVC) and poly(ethylene-co-vinyl acetate-co-sulfur dioxide) (E/VA/SO2). In one series, where the E/VA/SO2 had a mole composition of 72.7/18.5/8.8, true compatible blends were demonstrated by phase-contrast microscopy, torsion pendulum studies, and differential scanning calorimetry experiments for blends containing up to 40% E/VA/SO2. These blends exhibited a single Tg whose compositional variation was found to follow the Fox expression. Experimental densities were slightly greater than predicted on assuming volume additivity. This observation implies better packing and a negative heat of mixing and thus is in harmony with a negative free energy of mixing and the observed molecular compatibility.  相似文献   

5.
Measurements of the complex permittivity were used to study miscibility and phase behavior in blends of poly(vinyl chloride) (PVC) with two random ethylene—vinyl acetate (EVA) copolymers containing 45 and 70 wt % of vinyl acetate. The dielectric β relaxation of the pure polymers and blends was followed as a function of temperature and frequency for different blend compositions and thermal treatments. Blends of EVA 70/PVC were found to be miscible for compositions of about 25% EVA 70 and higher. Blends of lower EVA 70 content showed evidence of two-phase behavior. EVA 45/PVC blends were found to be miscible only at the composition extremes; at intermediate compositions these blends were two-phase, partially miscible. Both blend systems showed lower critical solution temperature behavior. Phase separation studies revealed that in the EVA 45/PVC blends, PVC was capable of diffusing into the higher Tg phase at temperatures below the Tg of the upper phase. In the blends, ion transport losses were significant above the loss peak temperatures, and in the two-phase systems, often obscured the upper temperature loss process. It was shown possible, however, to correct the loss curves for this transport contribution.  相似文献   

6.
We investigated the chemical fixation of carbon dioxide (CO 2) to a copolymer bearing epoxide and the application of the cyclic carbonate group containing copolymer to polymer blends. In the synthesis of poly[(2‐oxo‐1,3‐dioxolane‐4‐yl)methyl methacrylate‐co‐styrene] [poly(DOMA‐co‐St)] from the addition of CO 2 to poly(glycidyl methacrylate‐co‐styrene) [poly(GMA‐co‐St)], quaternary ammonium salts showed good catalytic activity at mild reaction conditions. The CO 2 addition reaction followed pseudo first‐order kinetics with the concentration of poly(GMA‐co‐St). In order to expand the applications of the CO 2 fixed copolymer, polymer blends of this copolymer with poly(methyl methacrylate) (PMMA) or poly(vinyl chloride) (PVC) were cast from N,N′‐dimethylformamide (DMF) solution. Miscibility of blends of poly(DOMA‐co‐St) with PMMA or PVC have been investigated both by differential scanning calorimetry (DSC) and visual inspection of the blends, and the blends were miscible over the whole composition ranges. The miscibility behaviors were also discussed in terms of FT‐IR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Zheng  Sixun    Han  Chen  Chunxia  Nie  Kangming  Guo  Qipeng 《Colloid and polymer science》2003,281(11):1015-1024
Epoxy resin (ER)/poly(ethylene oxide) (PEO) and/or poly(e-caprolactone) (PCL) blends cured with 1,3,5-trihydroxybenzene (THB) were prepared via the in situ curing reaction of epoxy monomers in the presence of PEO and/or PCL, which started from the initially homogeneous mixtures of DGEBA, THB and PEO and/or PCL. The miscibility and the intermolecular specific interactions in the thermosetting polymer blends were investigated by means of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The two systems displayed single and composition-dependant glass transition temperatures (T gs), indicating the full miscibility of the thermosetting blends. The experimental T gs of the blends can be well accounted for by Gordon-Taylor and Kwei equations, respectively. The T g-composition behaviors were compared with those of poly(hydroxyether of bisphnol A) (Phenoxy) blends with PEO and PCL. It is noted that the formation of crosslinked structure has quite different effects on miscibility and intermolecular hydrogen bonding interactions for the thermosetting polymer blends. In ER/PEO blends, the strength of the intermolecular hydrogen bonding interactions is weaker than that of the self-association in the control epoxy resin, which is in marked contrast to the case of Phenoxy/PEO blends. This suggests that the crosslinking reduces the intermolecular hydrogen bonding interactions, whereas the intermolecular hydrogen bonding interactions were not significantly reduced by the formation of the crosslinking structure in ER/PCL blends.  相似文献   

8.
Even though poly(ethylene oxide) (PEO) is immiscible with both poly(l ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA), this article shows a working route to obtain miscible blends based on these polymers. The miscibility of these polymers has been analyzed using the solubility parameter approach to choose the proper ratios of the constituents of the blend. Then, PVA has been grafted with l ‐lactide (LLA) through ring‐opening polymerization to obtain a poly(vinyl alcohol)‐graft‐poly(l ‐lactide) (PVA‐g‐PLLA) brush copolymer with 82 mol % LLA according to 1H and 13C NMR spectroscopies. PEO has been blended with the PVA‐g‐PLLA brush copolymer and the miscibility of the system has been analyzed by DSC, FTIR, OM, and SEM. The particular architecture of the blends results in DSC traces lacking clearly distinguishable glass transitions that have been explained considering self‐concentration effects (Lodge and McLeish) and the associated concentration fluctuations. Fortunately, the FTIR analysis is conclusive regarding the miscibility and the specific interactions in these systems. Melting point depression analysis suggests that interactions of intermediate strength and PLOM and SEM reveal homogeneous morphologies for the PEO/PVA‐g‐PLLA blends. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1217–1226  相似文献   

9.
This study was related to the investigation of the chemical fixation of carbon dioxide to a copolymer bearing epoxide and the application of the cyclic carbonate group containing copolymer‐to‐polymer blends. In the synthesis of poly[(2‐oxo‐1,3‐dioxolane‐4‐yl) methyl methacrylate‐co‐ethyl acrylate] [poly(DOMA‐co‐EA)] from poly(glycidyl methacrylate‐co‐ethyl acrylate) [poly(GMA‐co‐EA)] and CO2, quaternary ammonium salts showed good catalytic activity. The films of poly(DOMA‐co‐EA) with poly(methyl methacrylate) (PMMA) or poly(vinyl chloride) (PVC) blends were cast from N,N′‐dimethylformamide solution. The miscibility of the blends of poly(DOMA‐co‐EA) with PMMA or PVC have been investigated both by DSC and visual inspection of the blends. The optical clarity test and DSC analysis showed that poly(DOMA‐co‐EA) containing blends were miscible over the whole composition range. The miscibility behaviors were discussed in terms of Fourier transform infrared spectra and interaction parameters based on the binary interaction model. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1472–1480, 2001  相似文献   

10.
Miscibility behavior of poly(3-hydroxybutyrate) [PHB]/poly(vinylidene chloride-co-acrylonitrile) [P(VDC-AN)] blends have been investigated by differential scanning calorimetry and optical microscopy. Each blend showed a single Tg, and a large melting point depression of PHB. All the blends containing more than 40% PHB showed linear spherulitic growth behavior and the growth rate decreased with P(VDC-AN) content. The interaction parameter χ12, obtained from melting point depression analysis, gave the value of −0.267 for the PHB/P(VDC-AN) blends. All results presented in this article lead to the conclusion that PHB/P(VDC-AN) blends are completely miscible in all proportions from a thermodynamic viewpoint. The miscibility in these blends is ascribed to the specific molecular interaction involving the carbonyl groups of PHB. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2645–2652, 1997  相似文献   

11.
The miscibilities of ternary copolymer blends prepared from poly(styrene-stat-acrylonitrile), poly(styrene-stat-methyl methacrylate), and poly(methyl methacrylate-stat-acrylonitrile) were predicted by calculating the interaction parameter, χblend, for various blend combinations, from the corresponding binary segmental interaction parameters estimated from previous work. Binodal and spinodal curves were calculated using the Flory-Huggins theory and it was observed that the most accurate estimate of the boundary between miscible and immiscible blends was given by the spinodal. It has also been demonstrated that in some of the ternary blends with fixed copolymer compositions the miscibility of the blend can be altered by changing the ratio of the three components in the mixture. Conditions for miscibility in this ternary system, and possibly a general feature of all such systems, are (a) that at least two of the binary interaction parameters χij are less than the critical value χcrit, while the third should not be too much larger, that is, one of the copolymers may act as a compatibilizer for the other two copolymers, (b) that the difference Δχ = /χ12 ? χ13/ is small. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
The objective of this research was to study the structure-property relationships of two poly(vinyl chloride) (PVC)–poly(butadiene-co-acrylonitrile) (BAN) blends which exhibit differences in blend compatibility. Studies were carried out utilizing differential scanning calorimetry, dynamic mechanical testing, stress–strain, transmission electron microscopy (TEM), and infrared dichroism experiments at different temperatures. The BAN 31/PVC (BAN containing 31% acrylonitrile) system is considered to be nearly compatible as evidenced by Tg shifts, stress–strain results, orientation characteristics, and TEM micrographs. Similar experiments indicate that the BAN 44/PVC system is incompatible, and contains a mixed phase of BAN 44-PVC and a pure BAN 44 phase. The extent of heterogeneity in the compatible BAN 31/PVC system, however, plays an important role in the orientation characteristics of the blends.  相似文献   

13.
We employed high‐resolution 13C cross‐polarization/magic‐angle‐spinning/dipolar‐decoupling NMR spectroscopy to investigate the miscibility and phase behavior of poly(vinyl chloride) (PVC)/poly(methyl methacrylate) (PMMA) blends. The spin–lattice relaxation times of protons in both the laboratory and rotating frames [T1(H) and T(H), respectively] were indirectly measured through 13C resonances. The T1(H) results indicate that the blends are homogeneous, at least on a scale of 200–300 Å, confirming the miscibility of the system from a differential scanning calorimetry study in terms of the replacement of the glass‐transition‐temperature feature. The single decay and composition‐dependent T(H) values for each blend further demonstrate that the spin diffusion among all protons in the blends averages out the whole relaxation process; therefore, the blends are homogeneous on a scale of 18–20 Å. The microcrystallinity of PVC disappears upon blending with PMMA, indicating intimate mixing of the two polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2390–2396, 2001  相似文献   

14.
High molecular weight bisphenol A or hydroquinone‐based poly(arylene ether phosphine oxide/sulfone) homopolymer or statistical copolymers were synthesized and characterized by thermal analysis, gel permeation chromatography, and intrinsic viscosity. Miscibility studies of blends of these copolymers with a (bisphenol A)‐epichlorohydrin based poly(hydroxy ether), termed phenoxy resin, were conducted by infrared spectroscopy, dynamic mechanical analysis, and differential scanning calorimetry. All of the data are consistent with strong hydrogen bonding between the phosphonyl groups of the copolymers and the pendent hydroxyl groups of the phenoxy resin as the miscibility‐inducing mechanism. Complete miscibility at all blend compositions was achieved with as little as 20 mol % of phosphine oxide units in the bisphenol A poly(arylene ether phosphine oxide/sulfone) copolymer. Single glass transition temperatures (Tg) from about 100 to 200°C were achieved. Replacement of bisphenol A by hydroquinone in the copolymer synthesis did not significantly affect blend miscibilities. Examination of the data within the framework of four existing blend Tg composition equations revealed Tg elevation attributable to phosphonyl/hydroxyl hydrogen bonding interactions. Because of the structural similarities of phenoxy, epoxy, and vinylester resins, the new poly(arylene ether phosphine oxide/sulfone) copolymers should find many applications as impact‐improving and interphase materials in thermoplastics and thermoset composite blend compositions. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1849–1862, 1999  相似文献   

15.
The miscibility and morphology of poly(ε-caprolactone) (PCl) and poly(para-chlorostyrene) (PpClS) blend were investigated by using thermal analysis, morphological analysis, viscometry, and the study of melting point depression. A single glass transition temperature was observed by differential scanning calorimetry (DSC) for PCl/PpClS blends in the whole compositional range (0/100, 25/75, 50/50, 62.5/37.5, 75/25, 90/10). Morphology of the polymers and their blends was studied by scanning electron microscopy (SEM). The Fourier transform infrared spectra of the samples were obtained by spectrometer. Up to 12 cm−1 shifts in carbonyl stretching band of PCl was detected in the spectra of PpClS rich blends. The viscosity of PCl, PpClS and their blends has also been studied to investigate the miscibility according the miscibility criteria Δb, and Δ[η]. Using this data, the interaction parameters α and μ, based on the Chee and Sun et al. approaches were determined. These criteria indicated that the blend is miscible in all proportions up to 90% of PCl content in the blends. The melting point depression of PCl in the blends was examined to obtain the interaction parameter, χ12 for this system. The parameter, χ12 was found to be composition dependent. Negative values of the obtained interaction parameter also support the miscibility of this system up to the 90% PCl in the blend.  相似文献   

16.
Copolymers of styrene with vinylphenyl trifluoromethyl carbinol, p-vinylphenyl trifluoromethyl carbinol, vinylphenyl hexafluorodimethyl carbinol, and p-vinylphenol are conditionally compatible with poly(ethylene oxide), depending on their composition and blending ratios, whereas copolymers of styrene and vinylphenyl methyl carbinol are much less compatible with poly(ethylene oxide), as determined by Tg criteria and differential scanning calorimetry. The crystallinity of poly(ethylene oxide) is changed in the copolymer/poly(ethylene oxide) blends, as indicated by depressions of the poly(ethylene oxide) melting point. Hydrogen-bond formation has been studied in two selected blends by infrared (IR) spectroscopy. Hydrogen bonding dissociation and reassociation as a function of temperature are reported. The conformation changes of poly(ethylene oxide) in the blends, the interaction between copolymer and poly(ethylene oxide) as well as in the reference blend, polystyrene/poly(ethylene oxide), are also investigated.  相似文献   

17.
In this article, the miscibility of poly(ε‐caprolactone) (PCL) with poly(styrene‐co‐acrylonitrile) (SAN) containing 25 wt % of acrylonitrile is studied from both a qualitative and a quantitative point of view. The evidences coming from thermal analysis (differential scanning calorimetry) demonstrate that PCL and SAN are miscible in the whole range of composition. The Flory interaction parameter χ1,2 was calculated by the Patterson approximation and the melting point depression of the crystalline phase in the blends; in both cases, negative values of χ1,2 were found, confirming that the system is miscible. The interaction parameter evaluated within the framework of the mean field theory demonstrates that the miscibility of PCL/SAN blends is due to the repulsive interaction between the styrene and acrylonitrile segments in SAN. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

18.
The photooxidative degradation of blends (in a full range of compositions) of amorphous poly(vinyl chloride) (PVC) with semicrystalline poly(ethylene oxide) (PEO) in the form of thin films is investigated using absorption spectroscopy (UV–visible and Fourier transform infrared) and atomic force microscopy (AFM). The amount of insoluble gel formed as a result of photocrosslinking is estimated gravimetrically. It is found that the PVC/PEO blendsí susceptibility to photooxidative degradation differs from that pure of the components and depends on the blend composition and morphology. Photoreactions such as degradation and oxidation are accelerated whereas dehydrochlorination is retarded in blends. The photocrosslinking efficiency in PVC/PEO blends is higher than in PVC; moreover, PEO is also involved in this process. AFM images showing the lamellar structure of semicrystalline PEO in the blend lead to the conclusion that the presence of PVC does not disturb the crystallization process of PEO. The changes induced by UV irradiation allow the observation of more of the distinct PEO crystallites. This is probably caused by recrystallization of short, more mobile chains in degraded PEO or by partial removal of the less stable amorphous phase from the film surface. These results confirm previous information on the miscibility of PVC with PEO. The mechanism of the interactions between the components and the blend photodegradation are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 585–602, 2004  相似文献   

19.
The miscibility and phase behavior in blends of PVC with poly(methyl-co-hexyl acrylate)[MHA] and poly(methyl-co-2 ethyl hexyl acrylate)[MEH] were studied. It was found that PVC is miscible with MHA copolymers having a HA volume fraction from 0.30 to 0.92 and MEH copolymers having an EH volume fraction from 0.30 to 0.83 at 100°C. By applying the mean field theory to the phase diagrams of these blend systems, segmental interaction parameters which represent the binary interaction between different monomer units were estimated. The calculated values reflect the fact that the miscibility window observed for PVC/MHA and PVC/MEH blend systems was attributed to the effect of repulsion between different monomer units within the copolymer. To investigate the effect of specific interaction on the miscibility for these blend systems, an attempt was also made to describe the blend interaction parameter as a function of polar group concentration in the acrylate copolymer. The blend interaction parameter values exhibit a u-shaped curve as a function of the weight fraction of C?O group in the copolymer, and the lowest blend interaction parameter value appears at about 0.24 C?O weight fraction.  相似文献   

20.
The miscibility of blends of phenolphthalein poly(ether ether sulfone) (PES-C) and poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. Differential scanning calorimetry (DSC) studies showed that the PES-C/PEO blends prepared by casting from N,N-dimethylformamide (DMF) possessed a single, composition-dependent glass transition temperature (Tg), and thus that PES-C and PEO are miscible in the amorphous state at all compositions at lower temperature. At higher temperature, the blends underwent phase separation, and the PES-C/PEO blend system was found to display a lower critical solution temperature (LCST) behavior. The phase separation process in the blends has also been investigated by using DSC. Annealed at high temperatures, the PES-C/PEO blends exhibited significant changes of thermal properties, such as the enthalpy of crystallization and fusion, temperatures of crystallization and melting, depending on blend composition when phase separation occurred. These changes reflect different characteristics of phase structure in the blends, and were taken as probes to determine phase boundary. From both the thermal analysis and optical microscopy, the phase diagram of the blend system was established. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1383–1392, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号