首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental injection port has been designed for split or splitless sample introduction in capillary gas chromatography; the inlet uses electronic pressure control, in order that the column head pressure may be set from the GC keyboard, and the inlet may be used in the constant flow or constant pressure modes. Alternatively, the column head pressure may be programmed up or down during a GC run in a manner analogous to even temperature programming. Using electronic pressure control, a method was developed which used high column head pressures (high column flow rates) at the time of injection, followed by rapid reduction of the pressure to that required for optimum GC separation. In this way, high flow rates could be used at the time of splitless injection to reduce sample discrimination, while lower flow rates could be used for the separation. Using this method, up to 5 μl of a test sample could be injected in the splitless mode with no discrimination; in another experiment, 2.3 times as much sample was introduced into the column by using electronic pressure programming. Some GC peak broadening was observed in the first experiment.  相似文献   

2.
Packed capillary column solvating gas chromatography (SGC) and open tubular column gas chromatography (GC) were compared with respect to their potentials for fast separations. A recently introduced "universal" peak capacity equation was used to compare the performance of these two methods. The effects of various factors on peak capacity were investigated. Results demonstrate that retention factor and column efficiency are the main factors affecting peak capacity for fast separations. Packed columns produce both high retention factors and high selectivities. While high efficiencies and high peak capacities can be demonstrated by both techniques, open tubular column GC can surpass packed capillary column SGC in both measurements, except for the case of the analysis of simple mixtures in short analysis times, where retention factor and selectivity become important. Practical aspects such as pressure drop and sample capacity are compared for SGC and open tubular column GC. It was found that packed column SGC demonstrates higher sample capacities, but requires much higher column inlet pressures than open tubular column GC. A variety of mobile phases can be used for packed column SGC, which can provide high solvating power for large and polar compounds.  相似文献   

3.
The use of larger volume injection with on‐column injection and fast GC commercial instrumentation was evaluated with the model mixture of n‐alkanes of a broad range of volatility (C10–C28). The presented configuration allows introduction of 40–80‐fold larger sample volumes without any distortion of peak shapes compared to “usual” fast GC set‐ups using narrow‐bore columns. A normal‐bore retention gap (1–5 m×0.32 mm ID) was coupled to a narrow‐bore (5 m×0.1 mm ID×0.4 μm film thickness) analytical column using a standard press‐fit connector. The connection was tight and reliable, and hence suitable for hydrogen as carrier gas. The effect of pre‐column and analytical column connector, injection volume, pre‐column length, column inlet pressure, and analyte volatility on peak shape, peak broadening, and focusing are discussed. The precision of chromatographic data measurements and peak capacity under optimised temperature programmed conditions for fast separations with large volume injection were found to be very good. The presented fast GC set‐up with on‐column injection extends the applicability of the technique to trace analysis.  相似文献   

4.
The features of a resistive-heated capillary column for fast temperature-programmed gas chromatography (GC) have been evaluated. Experiments were carried out using a commercial available EZ Flash GC, an assembly which can be used to upgrade existing gas chromatographs. The capillary column is placed inside a metal tube which can be heated, and cooled, much more rapidly than any conventional GC oven. The EZ Flash assembly can generate temperature ramps up to 1200°/min and can be cooled down from 300 to 50°C in 30 s. Samples were injected via a conventional split/splitless injector and transferred to the GC column. The combination of a short column (5 m×0.25 mm i. d.), a high gas flow rate (up to 10 mL/min), and fast temperature programmes typically decreased analysis times from 30 min to about 2.5 min. Both the split and splitless injection mode could be used. With n-alkanes as test analytes, the standard deviations of the retention times with respect to the peak width were less than 15% (n = 7). First results on RSDs of peak areas of less than 3% for all but one n-alkane indicate that the technique can also be used for quantification. The combined use of a short GC column and fast temperature gradients does cause some loss of separation efficiency, but the approach is ideally suited for fast screening as illustrated for polycyclic aromatic hydrocarbons, organophosphorus pesticides, and triazine herbicides as test compounds. Total analysis times – which included injection, separation, and equilibration to initial conditions – were typically less than 3 min.  相似文献   

5.
在线高效液相色谱-毛细管气相色谱联用方法的建立   总被引:2,自引:0,他引:2  
陈吉平  黄威东  张乐沣  田玉增 《色谱》1997,15(3):222-224
建立了一种以保留间隙柱技术和阀切换以及定量管样品转移为接口并具有早期溶剂蒸气出口的在线液相色谱与毛细管气相色谱联用方法。考察了主要实验条件,如溶剂蒸发温度、载气压力等对联机系统性能的影响,并用萘和联苯对该系统的线性范围进行了测定。利用联机系统对一种轻柴油样品进行了分析。  相似文献   

6.
Summary When headspace gas chromatography utilizing capillary columns is used for trace analysis, sample enrichment is often needed. This involves splitless sample injection of fairly large gas volumes and relatively long sampling times. As a result of this, the band of the sample vapor may be too large causing peak distortion and poor resolution. This problem can be easily overcome by the use of cryogenic trapping. While this can be accomplished by cooling the whole column to subambient temperature during sample introduction, a more convenient way is to utilize part of the first coil of the capillary column as a cryogenic trap.The paper discusses the theoretical background and instrumentation of cryogenic trapping and demonstrates the possibilities through a number of examples.Enlarged text of a paper presented at the 37th Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Atlantic City, NJ, March 10–14, 1986.  相似文献   

7.
The combination of high performance liquid chromatography interfaced on-line with multidimensional gas chromatography (HPLC–GC–GC) is described. The HPLC column was interfaced to the GC via an on column interface, with automated pneumatic control of solvent evaporation and GC column switching. Cryogenic cold trapping was used for analyte focusing at the head of the first, non-polar GC capillary column and optionally at the head of the second, polar column. The determination of stilbene hormones in corned beef as their methylated derivatives by flame ionization detection is described.  相似文献   

8.
A new liquid nitrogen (LN2) jet-based thermal modulator for performing comprehensive two-dimensional (2D) gas chromatographic (GC x GC) separations has been designed and constructed. Temperature measurements of the trapping zone, a segment of uncoated fused silica capillary, show that it can be cooled to -196 degrees C in about 300 ms. A film of liquid nitrogen develops on the outside of the trapping capillary even when the oven temperature is in excess of 200 degrees C. Compounds as volatile as propane can be trapped by the modulator and held for periods of at least 1 min without breakthrough. The peak widths for n-alkanes are on the order of 80 ms at half height after passing through an 80cm second dimension column. Repeated analysis of gasoline demonstrated excellent run-to-run reproducibility of the system.  相似文献   

9.
Summary Uncoated fused-silica capillary tubing has found widespread use in GC and GC/MS, e. g., in splitless and oncolumn injection, in the open-split interface used in GC/MS, and in hybrid fused-silica/glass capillary columns. As the uncoated capillary is usually more active than the coated one, it is very important to pay sufficient attention to the deactivation of the uncoated capillary. Otherwise the uncoated portion used as column inlet and/or outlet may become the main source of column activity and of analytical error. This case is especially serious under temperature-programmed runs. The effect of film thickness and temperature program on column activity is also discussed.  相似文献   

10.
A procedure previously described for the prediction of the plate height of capillary columns operated at different inlet pressure of the carrier gas and at various column temperatures by using few retention data measured under isobaric conditions was modified and improved in order to permit the prediction of the retention times and of the peak widths at various heights. It is therefore possible to calculate the ratio, delta, between the peak width at different heights and the peak width at half height, whose value is used to predict the resolution at different height of two closely eluting peaks. It was found that the delta values do not depend on temperature and inlet pressure and are a characteristic of the used column; they can therefore be used in order to calculate the resolution in any temperature and inlet pressure condition. The method was used to predict the retention time, the peak width and the resolution of polar and non-polar compounds (alkanes, alkenes, chloroalkanes, alcohols, ketones) on capillary columns of different length and polarity by using as the starting data retention and width values measured in three isobaric runs only.  相似文献   

11.
Concurrent solvent evaporation using the loop-type HPLC-GC interface requires that the GC oven temperature be above the eluent boiling point at the given carrier gas inlet pressure in order to prevent eluent flowing into the GC capillary column. Corresponding oven temperatures representing minimum oven temperatures for eluent transfer were experimentally determined for solvents and solvent mixtures of interest for use as HPLC eluents. Evaluation of eluents for concurrent evaporation is discussed. Recommended lengths of uncoated column inlets (pre-columns) are derived from the mechanisms involved in solvent evaporation. Temperatures listed as minimum column temperatures for concurrently evaporating HPLC eluents are also useful for estimating maximum applicable column temperatures when working with the conventional retention gap or partially concurrent solvent evaporation techniques in coupled HPLC-GC.  相似文献   

12.
Summary High resolution gas chromatography requires the highest performance characteristics of gas chromatographic systems in terms of sampling and sample handling in strumentation, columns, and data handling. This paoper describes high precision computer measurements for characterizing capillary column efficiencies which are within 75% of the theoretical limit of capillary GC. Particular emphasis is given to detailed peak shape analysis, measurement accuracy and reproducibility, and system stability. Using known instrument performance parameters, it is then possible to characterize column performance with high accuracy in a meaningful manner. It is proposed that wall-coated tubular columns be characterized in terms of their chromatographic performance by the following parameters: Trennzahl (separation number), number of theoretical plates/meter, program temperature beseline stability, acid-base ratio, and the coefficient of skewness for 1-octanol. Statistical moments (m2) and hybrid moments are used to describe capillary column chromatographic performance because they may be related to basic physico-chemical column processes. These measurements are very sensitive parameters for characterizing GC columns. Using an online computer-based data system, the limits of capillary GC are shown to be limited by the sampling and injection steps.  相似文献   

13.
High-speed gas chromatography: an overview of various concepts.   总被引:2,自引:0,他引:2  
An overview is given of existing methods to minimise the analysis time in gas chromatography (GC) being the subject of many publications in the scientific literature. Packed and (multi-) capillary columns are compared with respect to their deployment in fast GC. It is assumed that the contribution of the stationary phase to peak broadening can be neglected (low liquid phase loading and thin film columns, respectively). The treatment is based on the minimisation of the analysis time required on both column types for the resolution of a critical pair of solutes (resolution normalised conditions). Theoretical relationships are given, describing analysis time and the related pressure drop. The equations are expressed in reduced parameters, making a comparison of column types considerably simpler than with the conventional equations. Reduction of the characteristic diameter, being the inside column diameter for open tubular columns and the particle size for packed columns, is the best approach to increase the separation speed in gas chromatography. Extremely fast analysis is only possible when the required number of plates to separate a critical pair of solutes is relatively low. Reducing the analysis time by reduction of the characteristic diameter is accompanied by a proportionally higher required inlet pressure. Due to the high resistance of flow of packed columns this seriously limits the use of packed columns for fast GC. For fast GC hydrogen has to be used as carrier gas and in some situations vacuum-outlet operation of capillary columns allows a further minimisation of the analysis time. For fast GC the columns should be operated near the conditions for minimum plate height. Linear temperature programmed fast GC requires high column temperature programming rates. Reduction of the characteristic diameter affects the sample capacity of the "fast columns". This effect is very pronounced for narrow-bore columns and in principle non-existing in packed columns. Multi-capillary columns (a parallel configuration of some 900 narrow-bore capillaries) take an intermediate position.  相似文献   

14.
Presently, two coupling techniques are used for directly introducing HPLC fractions into capillary GC: The retention gap technique (involving negligible or partially concurrent solvent evaporation) and fully concurrent solvent evaporation. While the former involves use of a conventional on-column injector, it is now proposed that concurrent solvent evaporation technique be carried out using a switching valve with a built-in sample loop. The technique is based on the concept that the carrier gas pushes the HPLC eluent into the GC capillary against its own vapor pressure, generated by a column temperature slightly exceeding the solvent boiling point at the carrier gas inlet pressure. Further improvement of the technique is achieved by flow regulation of the carrier gas (accelerated solvent evaporation) and backflushing of the sample valve (improved solvent peak shape). Concurrent solvent evaporation using the loop-type interface is easy to handle, allows transfer of very large volumes of HPLC eluent (exceeding 1 ml), and renders solvent evaporation very efficient, allowing discharge of the vapors of 1 ml of solvent through the column within 5–10 min.  相似文献   

15.
Temperature requirements for trapping and release of compounds in a cryogenic gas loop-type GC x GC modulator were determined. Maximum trapping temperatures on the uncoated, deactivated modulator capillary were determined for compounds from C4 (bp -0.5 degrees C) to C40 (bp 522 degrees C). The liquid-nitrogen cooled gas flow rate was reduced from a high of 15.5 to 1.5 SLPM over the range to achieve the required trapping temperature. Excessive cold jet flow rates caused irreversible trapping and peak tailing for semi-volatile compounds above C26. Alternate cold jet coolants were investigated. An ice water-cooled jet was able to trap compounds with boiling points from C18 (bp 316 degrees C) to C40 and a room temperature air-cooled jet was able to trap compounds from C20 (bp 344 degrees C) to C40. The hot jet produced launch temperatures approximately 40 degrees C hotter than the elution temperature with heating time constants of 8 to 27 ms. Modulated compound peaks were symmetrical with half-height peak widths of 43 to 56 ms for compounds with little second column retention, and 70 to 75 ms for compounds with more second column retention. The liquid nitrogen-cooled loop modulator with gas flow programming was used to produce a GC x GC chromatogram for a crude oil that contained compounds from C7 to C47.  相似文献   

16.
The use of hot splitless, cold splitless, and on-column injections for trace analysis in narrow-bore capillary GC is evaluated. Despite the low flow rates for the columns used, the required splitless times for splitless injections can be surprisingly short if liners with a small inside diameter are used. On-column injection can be applied by using an appropriate normal-bore precolumn coupled to the narrow-bore analytical column using a specially designed low dead volume column connector. The effects of the experimental conditions such as sample volume, injection temperature, and initial oven temperature on peak focusing and the discrimination and degradation behavior of the analytes are discussed. The possibilities to obtain sensitive and fast separations are illustrated by various applications.  相似文献   

17.
Since capillary columns with well immobilized stationary phases are expected to withstand contact with supercritical fluids, we wished to study their amenability to SFC. Simultaneously, we wished to learn how far SFC can be accomplished with the ordianary tools of capillary GC. The study demonstrates that truly supercritical, not just relatively high, pressure is required to ensure the typical effects of SFC. Results obtained with sub-and supercritical pressure are compared and discussed. A comprehenshive study of the parameters permitting SFC with capillary GC equipment showed a clear preference for CO2 as a carrier, FID detection, and oncolumn sampling. While no additional equipment is required, a critical feature is the flow restrictor to be mounted on the end of the column. The production and properties of this restrictor are discussed in detail. It is reasonable to hope that SFC with 0.1 mm id capillary columns can be realized in the pressure range of 100–150 bar, where substances which cannot be eluted from a capillary colum under GC donditions are expected to be analyzed.  相似文献   

18.
Sampling techniques for practical quantitative capillary GC have to meet certain principal requirements. Both the absolute and the relative peak areas (e.g. column loads) must be reproducible with high precision and at high accuracy; discrimination of certain constituents according to their volatility should not take place on sampling. On the basis of systematic studies, the three most reliable sampling techniques used for GC analyses with the aim of achieving precise and accurate quantitative data proved to be the following: On-column, injection, splitless PTV injection, and an optimized version of split sampling called “cooled needle split” injection. The on-column technique can be optimized by using precolumns with wider internal diameters and without stationary phase coatings to overcome the problems of large liquid sampling volumes and for automation. The PTV technique should only be used in the splitless mode because discrimination cannot be suppressed completely with the split mode. All three of the techniques can be operated automatically, either to avoid “human interference”, i.e. to improve precision or for unattended operation to save man-power.  相似文献   

19.
Summary A simple and sensitive method is presented for determination of styrene, toluene, ethylbenzene, isopropylbenzene andn-propylbenzene in human body fluids by capillary gas chromatography (GC) with cryogenic oven trapping. After heating a blood or urine sample containing each compound andp-diethylbenzene (internal standard, IS) in a 7.0-mL vial at 60°C for 20 min, 5 mL of headspace vapor was drawn into a glass syringe and injected into a GC. All vapor was introduced into an Rtx-Volatile middle bore capillary column in splitless mode at oven temperature of 20°C to trap entire analytes, and the oven temperature then programmed to 280°C for GC measurements by flame ionization detection. The present conditions gave sharp peaks of each compound and IS, and low background noises for whole blood or urine samples.  相似文献   

20.
Partially concurrent eluent evaporation presupposes an eluent evaporation rate in the GC pre-column that approaches the LC flow rate. Discharging the vapors through the whole GC column, evaporation rates reach 10–30 μl/min, i.e. are suitable just for LC flow rates typical for packed capillary LC columns. With an early vapor exit, evaporation rates are increased to 100–200 μl/min (under extreme conditions to some 800 μl/min), thus fitting the LC flow rates of 2 mm i.d. columns. Evaporation rates were measured for a standard set of pre-columns and conditions. The dependence of the evaporation rate on temperature, inlet pressure, carrier gas, and internal diameter of the retaining pre-column are discussed in order to allow the design of a GC system producing a desired evaporation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号