首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triorganoantimony and Triorganobismuth Derivatives of 2-Pyridinecarboxylic Acid and 2-Pyridylacetic Acid. Crystal and Molecular Structures of (C6H5)3Sb(O2C-2-C5H4N)2 and (CH3)3Sb(O2CCH2-2-C5H4N)2 Triorganoantimony and triorganobismuth dicarboxylates R3M(O2C-2-C5H4N)2 (M = Sb, R = CH3, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4) and (CH3)3Sb(O2CCH2-2-C5H4N)2 have been prepared from (CH3)3Sb(OH)2, R3SbO (R = C6H5, 4-CH3OC6H4), or R3BiCO3 (R = C6H5, 4-CH3C6H4) and the appropriate heterocyclic carboxylic acid. Vibrational spectroscopic data indicate a trigonal bipyramidal environment of M the O(? C)-atoms of the carboxylate ligands being in the apical and three C atoms (of R) in the equatorial positions; in addition coordinative interaction occurs in the 2-pyridinecarboxylates between M and O(?C) of one and N of the other carboxylate ligand and in (CH3)3)Sb(O2CCH2-2-C5H4N)2 between Sb and O(?C) of both carboxylate ligands. (C6H5)3Sb(O2C-2-C5H4N)2/(CH3)3Sb(O2CCH2-2-C5H4N)2 crystallize monoclinic [space group P21/c/P21/n; a = 892.6(9)/1043.4(6), b = 1326.9(6)/3166.2(18), c = 2233.1(9)/1147.5(7) pm, β = 99.74(8)°/97.67(5)° Z = 4/8; d(calc.) = 1.522/1.553 × Mg m?3; Vcell = 2606.7 × 106/3757.0 × 106pm3, structure determination from 3798/4965 independent reflexions (F ≥ 4.0 σ(F))/(I ≥ 1.96 σ(I), R(unweighted) = 0.024/0.036]. Sb is bonding to three C6H5/CH3 groups in the equatorial plane [mean distances Sb? C: 212.2(3)/208.7(6) pm] and two carboxylate ligands via O in the apical positions [Sb? O distances: 218.5(2), 209.9(2)/212.1(3), 213.2(3) pm]. In (C6H5)3Sb(O2C-2-C5H4N)2 there is a short Sb? O(?C) and a short Sb? N contact [Sb? O: 272.1(2), Sb? N: 260.2(2) pm] and distoritions of the equatorial angles [C? Sb? C: 99.2(1)°, 158.2(1)°, 102.0(1).] and of the axial angle [O? Sb? O: 169.9(1)°], and in (CH3)3Sb(O2CCH2-2-C5H4N)2, which contains two different molecules in the asym-metric unit, there are two Sb? O(?C) contacts [Sb? O, mean: 302.2(4), and 310.7(4)pm, respectively] and distortions of the equatorial angles [C? Sb? C: 114.5(2)°, 132.4(3)° 113.1(2)°, and 123.9(3)° 115.5(2)°, 120.6(3)°, respectively] and of the axial angles [O? Sb? O: 174,9(1)°, 177.9(1)°, respectively].  相似文献   

2.
Triorganoantimony and Triorganobismuth Disulfonates. Crystal and Molecular Structure of (C6H5)3M(O3SC6H5)2(M = Sb, Bi) Triorganoantimony disulfonates R3Sb(O3SR′)2 [R = CH3 = Me, C6H5 = Ph; R′ = Me, CH2CH2OH, Ph, 4-CH3C6H4. R = Ph; R′ = 2,4-(NO2)2C6H3], Me3Sb(O3SCF3)2 · 2 H2O and triphenylbismuth disulfonates Ph3Bi(O3SR′)2 [R = Me, CF3, CH2CH2OH, Ph, 4-CH3C6H4, 2,4-(NO2)2C6H3] have been prepared by reaction of Me3Sb(OH)2, (Ph3SbO)2, and Ph3BiCO3, respectively, with the appropriate sulfonic acids. From vibrational data an ionic structure is inferred for Me3Sb(O3SCF3)2 · 2 H2O and Me3Sb(O3SCH2CH2OH)2, and a covalent structure for the other compounds with a penta-coordinated central atom with trigonal bipyramidal surrounding (Ph or Me in equatorial, unidentate sulfonate ligands in apical positions). Ph3M(O3SPh)2 (M = Sb, Bi) crystallize monoclinic [space group P21/c; M = Sb/Bi: a = 1 611.5(8)/1 557.4(9), b = 987.5(6)/1 072,5(8), c = 1 859.9(9)/1 696.5(9) pm, β = 105.71(5)/96.62(5)°; Z = 4; d(calc.) 1.556/1.781 Mg · m?3; Vcell = 2 849.2 · 106/2 814.8 · 106 pm3; structure determination from 3 438/3 078 independent reflexions (I ≥ 3σ(I)), R(unweighted) = 0.030/0.029]. M is bonding to three Ph groups in the equational plane [mean distances Sb/Bi? C:210.1(4)/219.1(7) pm] and two sulfonate ligands with O in apical positions [distances Sb? O: 210.6(3), 212.8(2); Bi? O: 227.6(5), 228.0(4) pm]. Weak interaction of M with a second O atom of one sulfonate ligand is inferred from a rather short M? O contact distance [Sb? O: 327.4(4), Bi? O: 312.9(5) pm], and from the distortion of equatorial angles [C? Sb? C: 128.4(2), 119.2(2), 112.2(2); C? Bi? C: 135.9(3), 117.8(3), 106.3(3)°]  相似文献   

3.
Crystal and Molecular Structure of Tetramethyl(dimethylthiophosphinato)stiborane (CH3)4SbOP (S) (CH3)2 (CH3)4SbOP(S)(CH3)2 crystallizes in the triclinic space-group P1 with a = 7.125, b = 9.297, c = 18.861 Å, α = 77.44°, ß = 83.86°, γ = 79.91° and four formula units per cell. Stibonium is distorted trigonal-bipyramidal and phosphorous distorted tetrahedral surrounded. The mean values of bondlengths are: Sb? Ceq = 2.108, Sb? Cax = 2.147, Sb? O = 2.641, P? C = 1.819, P? O = 1.514, and P? S = 1.987 Å.  相似文献   

4.
Reaction Behaviour of Copper(I) and Copper(II) Salts Towards P(C6H4CH2NMe2‐2)3 ‐ the Solid‐State Structures of {[P(C6H4CH2NMe2‐2)3]CuOClO3}ClO4, {[P(C6H4CH2NMe2‐2)3]Cu}ClO4, [P(C6H4CH2NMe2‐2)3]CuONO2 and [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐2)]CuONO2 The reaction behaviour of P(C6H4CH2NMe2‐2)3 ( 1 ) towards different copper(II) and copper(I) salts of the type CuX2 ( 2a : X = BF4, 2b : X = PF6, 2c : X = ClO4, 2d : X = NO3, 2e : X = Cl, 2f : X = Br, 13 : X = O2CMe) and CuX ( 5a : X = ClO4, 5b : X = NO3, 5c : X = Cl, 5d : X = Br) is discussed. Depending on X, the transition metal complexes [P(C6H4CH2NMe2‐2)3Cu]X2 ( 3a : X = BF4, 3b : X = PF6), {[P(C6H4CH2NMe2‐2)3]CuX}X ( 4 : X = ClO4, 11a : X = Cl, 11b : X = Br, 14 : X = O2CMe), {[P(C6H4CH2NMe2‐2)3]Cu}ClO4 ( 6 ), [P(C6H4CH2NMe2‐2)3]CuX ( 7a : X = Cl, 7b : X = Br, 10 : X = ONO2), [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐2)]CuONO2 ( 9 ) and [P(C6H4CH2NMe2‐2)3]CuCl}CuCl2 ( 12 ) are accessible. While in 3a , 3b and 6 the phosphane 1 preferentially acts as tetrapodale ligand, in all other species only the phosphorus atom and two of the three C6H4CH2NMe2 side‐arms are datively‐bound to the appropriate copper ion. In solution a dynamic behaviour of the latter species is observed. Due to the coordination ability of X in 3a , 3b and 6 non‐coordinating anions X are present. However, in 4 one of the two perchlorate ions forms a dative oxygen‐copper bond and the second perchlorate ion acts as counter ion to {[P(C6H4CH2NMe2‐2)3]CuOClO3}+. In 7 , 9 and 10 the fragments X (X = Cl, Br, ONO2) form a σ‐bond with the copper(I) ion. The acetate moiety in 14 acts as chelating ligand as it could be shown by IR‐spectroscopic studies. All newly synthesised cationic and neutral copper(I) and copper(II) complexes are representing stable species. Redox processes are involved in the formation of 9 and 12 by reacting 1 with 2 . The solid‐state structures of 4 , 6 , 9 and 10 are reported. In the latter complexes the copper(II) ( 4 ) or copper(I) ion ( 6 , 9 , 10 ) possesses the coordination number 4. This is achieved by the formation of a phosphorus‐ and two nitrogen‐copper‐ ( 4 , 9 , 10 ) or three ( 6 ) nitrogen‐copper dative bonds and a coordinating ( 4 ) or σ‐binding ( 9 , 10 ) ligand X. In 6 all three nitrogen and the phosphorus atoms are coordinatively bound to copper, while X acts as non‐coordinating counter‐ion. Based on this, the respective copper ion occupies a distorted tetrahedral coordination sphere. While in 4 and 10 a free, neutral Me2NCH2 side‐arm is present, which rapidly exchanges in solution with the coordinatively‐bound Me2NCH2 fragments, this unit is protonated in 10 . NO3 acts as counter ion to the CH2NMe2H+ moiety. In all structural characterized complexes 6‐membered boat‐like CuPNC3 cycles are present.  相似文献   

5.
Bis-chloromethyl-alkyl-and - aryl-phosphine oxides, (CICH2)2P(O)R, which are obtained by reaction of (CICH2)2P(O)Cl with GRIGNARD reagents, undergo a MICHAELIS -ARBUSOV reaction when heated for several hours with trivalent phosphorus esters (phosphites, phosphonites, or phosphinites) at 170–180°C. The reaction affords bis-(dialkyloxyphosphonyl-methyl)-, bis (alkyloxyphosphinyl-methyl)-, and bis-(oxophosphoranyl-methyl)-, -alkyl- or -aryl-phosphine oxides, R(O)P[CH2P(O)R′R″]2 R = CH3, C2H5, n-C8H17, n-C12H25, C6H5; R′ and R″ = C2H5O, C4H9O, C6H5, CH3 in good yields. Conversion of the compounds containing alkyloxy groups to the free acids is achieved by refluxing with conc. HCl. Bis-(dihydroxyphosphonyl-methyl)-dodecylphosphine oxide, n-C12H25(O)P[CH2P(O) (OH)2]2, obtained by hydrolysis of the all-ethyl ester, titrates in aqueous solution as a tetrabasic acid with breaks at pH = 4 (two equivalents), pH = 6,9 (one equivalent) and pH = 9,6 (one equivalent). This acid, its disodium salt (m. p. 405–410°) and its tetrasodium salt (m.p. > 460°) are surface active and are excellent chelating agents. The 1H- and 31P-NMR. spectra of all the compounds prepared are discussed.  相似文献   

6.
Direct Synthesis of Orthometallated Ketones of the Type RCO(o-C6H4)Mn(CO)4?nLn (R = Alkyl and Aryl Groups, n = 0, 1, 2, L = Ligand) The starting materials of the type RMn(CO)5?nLn und (C6H5)2 Hg react to the products of the type RCO(o-C6H4)Mn(CO)4?nLn[n = 0, R = Ch3, C2H5, C3H7, C6H5,CH2; R = C6H5, n = 1, L = E(C6H5)3, E = P, As, Sb; R = C6H5, n = 2, L = P(OR′)3, R′ = C6H5, CH3, C2H5, C3H7]. Steps of their complex reaction pathway are proposed. These orthometallated substances have been characterized by means of 1H-n.m.r., i.r. and u.v. spectroscopic measurements. The determination of the molecular structure of the two compounds RCO(o-C6H4)Mn(CO)3L [R = C2H5, L = CO; R = C6H5, L = As(C6H5)3] show that both contain a planar heterocyclic five-membered ring of the type .  相似文献   

7.
New Methods for Synthesis of Organohalogenostibanes Organohalogenostibanes RSbX2 (R = CH3, C6H5; X = Cl, Br) and R2SbX (R = C6H5; X = Cl) are received in good yields by alkylation or arylation of the corresponding antimony halides with Pb(CH3)4, Sn(CH3)4, Sb(CH3)3, or Sb(C6H5)3. These methods are better than those, described in the literature for preparation of the compounds.  相似文献   

8.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

9.
Polysulfonyl Amines. XLVI. Molecular Adducts of Di(organosulfonyl)amines with Dimethyl Sulfoxide and Triphenylphosphine Oxide. X-Ray Structure Determination of Di(4-fluorobenzenesulfonyl)amine-Dimethyl Sulfoxide(2/1) From equimolar solutions of the respective components in CH2Cl2/petroleum ether, the following crystalline addition compounds were obtained: (X? C6H4SO2)2NH …? OS(CH3)2, where X = H, 4? CH3, 4? Cl, 4? Br, 4? I, 4? NO2 or 3? NO2; [(4? F? C6H4SO2)2NH]2 · (OS(CH)3)2 ( 8 ); (4? I? C6H4SO2)2NH · OP(C6H5)3. A (2/1) complex of (4? F? C6H4SO2)2NH with OP(C6H5)3 could not be isolated. The solid-state structure of the (2/1) compound 8 is compared with the known structure of the (1/1) complex (CH3SO2)2NH · OS(CH3)2. The crystallographic data for 8 at ?95°C are: monoclinic, space group C2/c, a = 2 369.9(13), b = 1 006.8(4), c = 2 772.6(13) pm, β = 110.71(4)°, U = 6.187 nm3, Z = 8. Two N? H …? O hydrogen bonds with N …? O 275 and 280 pm connect the disulfonylamine molecules with the dimethyl sulfoxide molecule. The O atom of the latter has a trigonal-planar environment consisting of the S atom and the two hydrogen bond H atoms.  相似文献   

10.
Synthesis of Monomeric T‐Shaped Silver(I) Halide Complexes – Crystal Structure Analysis of [P(C6H4CH2NMe2‐2)3]AgBr Treatment of the tetrapodal phosphane P(C6H4CH2NMe2‐2)3 ( 1 ) with equimolar amounts of the silver(I) halides AgX ( 2 a : X = Cl, 2 b : X = Br) produces in tetrahydrofuran at 25 °C the monomeric silver(I) complexes [P(C6H4CH2NMe2‐2)3]AgX with planar coordination at the Ag atoms ( 3 a : X = Cl, 3 b : X = Br) in excellent yields. From complex 3 b a single X‐ray crystal structure analysis was carried out. Mononuclear 3 b crystallizes in the monoclinic space group P21/c with the cell parameters a = 14.504(6), b = 11.034(3), c = 17.604(5) Å, β = 102.86(4)°; V = 2746.6(16) Å3; Z = 4; 2953 observed unique reflections, R1 = 0.0805. Complex 3 b consists of monomeric sub‐units with a planar T‐shaped arrangement formed by the atoms Ag1, N1, P1 as well as Br1, whereby the P1–Ag1–Br1 array is almost linear orientated.  相似文献   

11.
Synthesis of Fluoro-λ5-monophosphazenes and Fluoro-1,3-diaza-2λ5,4λ5-diphosphetidines by Means of the Staudinger Reaction 35 Tetrafluoro- and 2 difluorodiaza-diphosphetidines as well as 4 difluoro- and 30 monofluoro-λ5-monophosphazenes were prepared by the Staudinger reaction between tervalent phosphorus fluorides, RnPF3?n (n = 1, 2; R = R2N, (CH2)5N, O(CH2)4N, RO, (CH2O)2, alkyl, aryl) and phenylazides, X? C6H4N3 (X = H, 4-CH3, 4-Cl, 4-Br, 4-NO2, 3-NO2). PF3 does not react with phenylazide The influence of substituents on the structure of the reaction products is discussed. Kinetic measurements allowed to determine the constants λPI of the substituents (CH2)5N, O(CH2)4N and R(C6H5)N (R = CH3, C2H5, n-C4H9).  相似文献   

12.
On Organophosphorus Compounds. XV. Preparation and Reactions of Trimethylsilyl Esters of Phosphinic Acids Trimethylsilylesters of Phosphinic acids R2P(X)YSi(CH3)3 (R ? CH3, C2H5, C3H7, t?C4H9, C6H5; X, Y ? O, S) were prepared by 7 different methods as in some cases easily hydrolysable but thermally remarkably stable compounds. The properties and some reactions of these substances are reported, their structures confirmed by IR? as well as 1H- and 31P-NMR-spectroscopy. Dimethylsilylen-bis(phosphinic acid esters) were obtained according to \documentclass{article}\pagestyle{empty}\begin{document}$ 2{\rm R}_{2} {\rm P(\rm X)\rm ONH}_{4} + {\rm R}_{\rm 2} {\rm SiCl}_{2} \to 2{\rm E NH}_{4} {\rm Cl + R}_{2} {\rm P(X) - O - SiR}_{2} - {\rm O - P(X)R}_{2} ({\rm R = CH}_{3};{\rm X = O,S}) $\end{document}.  相似文献   

13.
Metal Complexes of Biologically Important Ligands, CLVII [1] Halfsandwich Complexes of Isocyanoacetylamino acid esters and of Isocyanoacetyldi‐ and tripeptide esters (?Isocyanopeptides”?) N‐Isocyanoacetyl‐amino acid esters CNCH2C(O) NHCH(R)CO2CH3 (R = CH3, CH(CH3)2, CH2CH(CH3)2, CH2C6H5) and N‐isocyanoacetyl‐di‐ and tripeptide esters CNCH2C(O)NHCH(R1)C(O)NHCH(R2)CO2C2H5 and CNCH2C(O)NHCH(R1)C(O)NHCH (R2)C(O)NHCH(R3)CO2CH3 (R1 = R2 = R3 = CH2C6H5, R2 = H, CH2C6H5) are available by condensation of potassium isocyanoacetate with amino acid esters or peptide esters. These isocyanides form with chloro‐bridged complexes [(arene)M(Cl)(μ‐Cl)]2 (arene = Cp*, p‐cymene, M = Ir, Rh, Ru) in the presence of Ag[BF4] or Ag[CF3SO3] the cationic halfsandwich complexes [(arene)M(isocyanide)3]+X? (X = BF4, CF3SO3).  相似文献   

14.
Bipy, Phen, and P(C6H4CH2NMe2‐2)3 in the Synthesis of Cationic Silver(I) Complexes; the Solid‐State Structures of [P(C6H4CH2NMe2‐2)3]AgOTf and [Ag(phen)2]OTf The reaction of [P(C6H4CH2NMe2‐2)3]AgX ( 1a , X = OTf; 1b , X = OClO3) with equimolar amounts of LcapL ( 2a , LcapL = 2, 2′‐bipyridine, bipy; 2b , LcapL = 4, 4′‐dimethyl‐2, 2′‐bipyridine, bipy′; 2c , LcapL = 1, 10‐phenanthroline, phen) leads to the formation of the cationic complexes {[P(C6H4CH2NMe2‐2)3]Ag(LcapL)}+X (LcapL = bipy: 3a , X = OTf; 3b , X = ClO4; LcapL = bipy′: 3c , X = OTf; 3d , X = ClO4; LcapL = phen: 3e , X = OTf; 3f , X = ClO4) in which the building blocks LcapL and P(C6H4CH2NMe2‐2)3 act as bidentate chelating ligands and are datively‐bound to the silver atom. Spectroscopic studies reveal that on the NMR time‐scale the phosphane group is dynamic with exchanging the respective Me2NCH2 built‐in arms. While complex 3e is stable in the solid‐state, it appeared that solutions of 3e start to decompose upon precipitation of colloidal silver when they are heated or irradiated with light, respectively. Appropriate work‐up of the reaction mixture allows the isolation of the phosphane P(C6H4CH2NMe2‐2)3 ( 5 ) along with [Ag(phen)2]OTf ( 4 ). The solid‐state structures of neutral 1a and cationic 4 are reported. Mononuclear 1a crystallizes in the monoclinic space group P21/c with the cell parameters a = 16.7763(2), b = 14.7892(2), c = 25.44130(10)Å, β = 106.1260(10), V = 6063.83(11)Å3 and Z = 4 with 8132 observed unique reflections (R1 = 0.0712), while 4 crystallizes in the monoclinic space group C2/c with the cell parameters a = 26.749(3), b = 7.1550(10), c = 26.077(3)Å, β = 113.503(2), V = 4576.8(10)Å3 and Z = 4 with 6209 observed unique reflections (R1 = 0.0481). The unit cell of 1a consists of two independent molecules. In both molecules the silver atom possesses a distorted tetrahedral coordination sphere and a boat‐like conformation for the six‐membered AgPNCH2C2/phenyl cycles is found. In 4 , as typical for 1a , the silver atom possesses the coordination number 4. The two phen ligands are tilted by 40.63°. The OTf group is acting as non‐coordinating counter ion.  相似文献   

15.
C–H-Activation: Syntheses and Properties of Acetonato( C )-acidophthalocyaninato(2–)metallates(III) of Rhodium and Iridium; Crystal Structure of Tetra(n-butyl)ammonium Acetonato( C )azidophthalocyaninato(2–)iridate(III) Phthalocyaninato(2–)metallate(I) of rhodium and iridium reacts with carbonyl substrates like acetone or acetylacetone and halides or pseudohalides forming acetonato(C)- or acetylacetonato(C)acidophthalocyaninato(2–)metallates(III), that are isolated as tetra(n-butyl)ammonium complex salts (nBu4N)[M(R)(X)pc2–] (M = Rh, Ir; R = aC, acaC; X = Cl, I, N3, SCN/NCS). (nBu4N)[Ir(aC)(N3)pc2–] · 0,25(C2H5)2O · 0,5 CH2Cl2 crystallizes in the triclinic space group P1 with cell parameters a = 16.267(8) Å, b = 17.938(3) Å, c = 18.335(4) Å, α = 74.77(2)°, β = 73.73(3)°, γ = 84.25(3)°, V = 4954(3) Å3, Z = 4. There are two crystallographically independent anions, differing by the orientation of the azido ligand either towards an isoindole group or a Naza bridge of the phthalocyaninate, while the σ-C bonded acetonate is always oriented towards an isoindole group (gauche and ecliptical configuration). The Ir–C distances are 2.12(1) and 2.14(1) Å. Due to the trans influence of the acetonate-C atom the Ir-azide-N distances of 2.22(1)/2.24(1) Å are longer than expected. The electrochemical properties and the optical, vibrational, and 1H-NMR spectra are discussed.  相似文献   

16.
Synthesis and Structural Studies of Aluminum Dialkylamines and Dialkylamides: N‐Chirality of (CH3)3AlNHRR′ and cis‐trans ‐Isomerism at X2AlNRR′ (X = CH3, Cl, H) Aluminum dialkylamines and dialkylamides were prepared from Al(CH3)3 and NH(CH3)R′ (R′: –C2H5, –tC4H9) and characterized by elemental analyses, 1H‐, 13C‐, and 27Al‐NMR spectroscopy. The crystal structures of [(CH3)2AlN(CH3)(–tC4H9)]2 ( IV ), [Cl2AlN(CH3)(C2H5)]2 ( V ), and [H2AlN(CH3)(C2H5)] ( VI‐trans and VI‐cis ) are discussed.  相似文献   

17.
Starting with the cyclopentadienyl(carbonyl)metal anions [π-C5H5(CO)3M]? (M = Cr, Mo, W) and (CH3)2SbBr, transition metal-substituted stibines of the form π-C5H5(CO)3MSb(CH3)2 are obtained. The nucleophilic character of the VB element primarily determines the reactivity of these species, and shows itself in alkyl halide quarternization (a) or ligand exchange on activated metal carbonyl complexes (b). (a) yields the trialkylstibine-substituted metal cations [π-C5H5-(CO)3MSb(CH3)2R]X (R = CH3, CH2CH=CH2, CH2C6H5; X = Br, J), (b) leads to the formation of the metal carbonyl derivatives LM(CO)5, L2M(CO)4 (M = Cr, Mo, W), LNi(CO)3 and LFe(CO)4 [L = (CH3)2SbM(CO)3-π-C5H5] which are the first (CH3)2Sb-bridged polynuclear complexes. Phosphorus ylides cause heterolytic cleavage of the antimonytransition metal bond. Transfer of the (CH3)2Sb-group to the ylidic carbanion occurs via substitution/transylidation. All new compounds have been fully characterized by means of 1H NMR, IR and mass spectroscopy  相似文献   

18.
A series of arylantimony ferrocenecarboxylates with the formula (C5H5FeC5H4CO2)nSbAr(5?n) (n = 1, 2; Ar = C6H5, 4‐CH3C6H4, 3‐CH3C6H4, 2‐CH3C6H4, 4‐ClC6H4, 4‐FC6H4) were synthesized and characterized by elemental analysis, IR, 1H NMR and mass spectra. The crystal structures of (C5H5FeC5H4CO2)2Sb(4‐CH3C6H4)3 and C5H5FeC5H4CO2SbPh4 were determined by X‐ray diffraction. Four human neoplastic cell lines (HL‐60, Bel‐7402, KB and Hela) were used to screen these compounds. The results indicate that these compounds at 10 µM show certain in vitro antitumor activities. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Some new phosphoramidates were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The structures of CF3C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 ( 1 ) and 4‐NO2‐C6H4N(H)P(O)[4‐CH3‐NC5H9]2 ( 6 ) were confirmed by X‐ray single crystal determination. Compound 1 forms a centrosymmetric dimer and compound 6 forms a polymeric zigzag chain, both via ‐N‐H…O=P‐ intermolecular hydrogen bonds. Also, weak C‐H…F and C‐H…O hydrogen bonds were observed in compounds 1 and 6 , respectively. 13C NMR spectra were used for study of 2J(P,C) and 3J(P,C) coupling constants that were showed in the molecules containing N(C2H5)2 and N(C2H5)(CH2C6H5) moieties, 2J(P,C)>3J(P,C). A contrast result was obtained for the compounds involving a five‐membered ring aliphatic amine group, NC4H8. 2J(P,C) for N(C2H5)2 moiety and in NC4H8 are nearly the same, but 3J(P, C) values are larger than those in molecules with a pyrrolidinyl ring. This comparison was done for compounds with six and seven‐membered ring amine groups. In compounds with formula XP(O)[N(CH2R)(CH2C6H5)]2, 2J(P,CH2)benzylic>2J(P,CH2)aliphatic, in an agreement with our previous study.  相似文献   

20.
The thermal reaction of Ru3(CO)12 with ethacrynic acid, 4‐[bis(2‐chlorethyl)amino]benzenebutanoic acid (chlorambucil), or 4‐phenylbutyric acid in refluxing solvents, followed by addition of two‐electron donor ligands (L), gives the diruthenium complexes Ru2(CO)4(O2CR)2L2 ( 1 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = C5H5N; 2 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = PPh3; 3 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = C5H5N; 4 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = PPh3; 5 : R = C3H6‐C6H5, L = C5H5N; 6 : R = C3H6‐C6H5, L = PPh3). The single‐crystal structure analyses of 2 , 3 , 5 and 6 reveal a dinuclear Ru2(CO)4 sawhorse structure, the diruthenium backbone being bridged by the carboxylato ligands, while the two L ligands occupy the axial positions of the diruthenium unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号