首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李子良 《中国物理 B》2009,18(10):4074-4082
Higher-order Korteweg-de Vries (KdV)-modified KdV (mKdV) equations with a higher-degree of nonlinear terms are derived from a simple incompressible non-hydrostatic Boussinesq equation set in atmosphere and are used to investigate gravity waves in atmosphere. By taking advantage of the auxiliary nonlinear ordinary differential equation, periodic wave and solitary wave solutions of the fifth-order KdV--mKdV models with higher-degree nonlinear terms are obtained under some constraint conditions. The analysis shows that the propagation and the periodic structures of gravity waves depend on the properties of the slope of line of constant phase and atmospheric stability. The Jacobi elliptic function wave and solitary wave solutions with slowly varying amplitude are transformed into triangular waves with the abruptly varying amplitude and breaking gravity waves under the effect of atmospheric instability.  相似文献   

2.
We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.  相似文献   

3.
In this paper, new explicit and exact travelling wave solutions for a compound KdV-Burgers equation are obtained by using the hyperbola function method and the Wu elimination method, which include new solitary wave solutions and periodic solutions. Particularly important cases of the equation, such as the compound KdV, mKdV-Burgers and mKdV equations can be solved by this method. The method can also solve other nonlinear partial differential equations.  相似文献   

4.
The effect of changing the direction of motion of a defect (a soliton of small amplitude) in soliton lattices described by the Korteweg–de Vries and modified Korteweg–de Vries integrable equations (KdV and mKdV) was studied. Manifestation of this effect is possible as a result of the negative phase shift of a small soliton at the moment of nonlinear interaction with large solitons, as noted in [1], within the KdV equation. In the recent paper [2], an expression for the mean soliton velocity in a “cold” KdV-soliton gas has been found using kinetic theory, from which this effect also follows, but this fact has not been mentioned. In the present paper, we will show that the criterion of negative velocity is the same for both the KdV and mKdV equations and it can be obtained using simple kinematic considerations without applying kinetic theory. The averaged dynamics of the “smallest” soliton (defect) in a soliton gas consisting of solitons with random amplitudes has been investigated and the average criterion of changing the sign of the velocity has been derived and confirmed by numerical solutions of the KdV and mKdV equations.  相似文献   

5.
余寒梅  程荣军  葛红霞 《中国物理 B》2010,19(10):100512-100512
Traffic congestion is related to various density waves, which might be described by the nonlinear wave equations, such as the Burgers, Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (mKdV) equations. In this paper, the mKdV equations of four different versions of lattice hydrodynamic models, which describe the kink--antikink soliton waves are derived by nonlinear analysis. Furthermore, the general solution is given, which is applied to solving a new model --- the lattice hydrodynamic model with bidirectional pedestrian flow. The result shows that this general solution is consistent with that given by previous work.  相似文献   

6.
In this paper, new explicit and exact solutions for a compound KdV-Burgers equation are obtained using the hyperbolic function method and the Wu elimination method, which include new solitary wave solutions and periodic solutions. Particularly important cases of the equation, such as the compound KdV, mKdV-Burgers and mKdV equations can be solved by this method. The method can also be applied to solve other nonlinear partial differential equation and equations.  相似文献   

7.
With the help of a simple Lie algebra, an isospectral Lax pair, whose feature presents decomposition of element (1, 2) into a linear combination in the temporal Lax matrix, is introduced for which a new integrable hierarchy of evolution equations is obtained, whose Hamiltonian structure is also derived from the trace identity in which contains a constant γ to be determined. In the paper, we obtain a general formula for computing the constant γ. The reduced equations of the obtained hierarchy are the generalized nonlinear heat equation containing three-potential functions, the mKdV equation and a generalized linear KdV equation. The algebro-geometric solutions (also called finite band solutions) of the generalized nonlinear heat equation are obtained by the use of theory on algebraic curves. Finally, two kinds of gauge transformations of the spatial isospectral problem are produced.  相似文献   

8.
A transformation is introduced for generalized mKdV (GmKdV for short) equation and Jacobi elliptic function expansion method is applied to solve it. It is shown that GmKdV equation with a real number parameter can be solved directly by using Jacobi elliptic function expansion method when this transformation is introduced, and periodic solution and solitary wave solution are obtained. Then the generalized solution to GmKdV equation deduces to some special solutions to some well-known nonlinear equations, such as KdV equation, mKdV equation, when the real parameter is set specific values.  相似文献   

9.
The basic set of fluid equations can be reduced to the nonlinear Kortewege-de Vries (KdV) and nonlinear Schrödinger (NLS) equations. The rational solutions for the two equations has been obtained. The exact amplitude of the nonlinear ion-acoustic solitary wave can be obtained directly without resorting to any successive approximation techniques by a direct analysis of the given field equations. The Sagdeev's potential is obtained in terms of ion acoustic velocity by simply solving an algebraic equation. The soliton and double layer solutions are obtained as a small amplitude approximation. A comparison between the exact soliton solution and that obtained from the reductive perturbation theory are also discussed.  相似文献   

10.
Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV–mKdV equation are chosen to illustrate the effectiveness of the method.  相似文献   

11.
《Physics letters. A》2006,356(2):124-130
A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein–Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham–Broer–Kaup equations.  相似文献   

12.
杨洁  赵强 《物理学报》2010,59(2):750-753
利用修正的Burger模式,采用行波解和泰勒级数展开法得到有完整Coriolis力和热源影响下超长波的解析解.得到描述非线性超长波的KdV和KdV-mKdV方程,并得到它的椭圆余弦波解、孤立波解和三角函数周期解.  相似文献   

13.
Abstract

The Painlevé-test has been applied to checking the integrability of nonlinear PDEs, since similarity solutions of many soliton equations satisfy the Painlevé equation. As is well known, such similarity solutions can be obtained by the infinitesimal transformation, that is, the classical similarity analysis, and also the dimension of the PDEs can be reduced.

In this paper, the KdV, the mKdV, and the nonlinear Schrödinger equations are considered and are transformed into equations with loss and/or nonuniformity by transformations constructed on a basis of the local similarity variables. The transformations include the Bäcklund and the Galilei invariant ones. It should be noticed that the approach is applicable to other PDEs and for nonlocal similarity variables.  相似文献   

14.
Integrable systems are derived from inelastic flows of timelike, spacelike, and null curves in 2– and 3– dimensional Minkowski space. The derivation uses a Lorentzian version of a geometrical moving frame method which is known to yield the modified Korteveg-de Vries (mKdV) equation and the nonlinear Schrödinger (NLS) equation in 2– and 3– dimensional Euclidean space, respectively. In 2–dimensional Minkowski space, timelike/spacelike inelastic curve flows are shown to yield the defocusing mKdV equation and its bi-Hamiltonian integrability structure, while inelastic null curve flows are shown to give rise to Burgers’ equation and its symmetry integrability structure. In 3–dimensional Minkowski space, the complex defocusing mKdV equation and the NLS equation along with their bi-Hamiltonian integrability structures are obtained from timelike inelastic curve flows, whereas spacelike inelastic curve flows yield an interesting variant of these two integrable equations in which complex numbers are replaced by hyperbolic (split-complex) numbers.  相似文献   

15.
The hybrid lattice, known as a discrete Korteweg-de Vries (KdV) equation, is found to be a discrete modified Korteweg-de Vries (mKdV) equation in this paper. The coupled hybrid lattice, which is pointed to be a discrete coupled KdV system, is also found to be discrete form of a coupled mKdV systems. Delayed differential reduction system and pure difference systems are derived from the coupled hybrid system by means of the symmetry reduction approach. Cnoidal wave, positon and negaton solutions for the coupled hybrid system are proposed.  相似文献   

16.
New Exact Solutions to the Combined KdV and mKdV Equation   总被引:2,自引:0,他引:2  
The modified mapping method is developed to obtain new exact solutions to the combined KdV and mKdV equation. The method is applicable to a large variety of nonlinear evolution equations, as long as odd- and even-order derivative terms do not coexist in the equation under consideration.  相似文献   

17.
荆建春  李彪 《中国物理 B》2013,22(1):10303-010303
In this paper, the extended symmetry transformation of (3+1)-dimensional (3D) generalized nonlinear Schrdinger (NLS) equations with variable coefficients is investigated by using the extended symmetry approach and symbolic computation. Then based on the extended symmetry, some 3D variable coefficient NLS equations are reduced to other variable coefficient NLS equations or the constant coefficient 3D NLS equation. By using these symmetry transformations, abundant exact solutions of some 3D NLS equations with distributed dispersion, nonlinearity, and gain or loss are obtained from the constant coefficient 3D NLS equation.  相似文献   

18.
We demonstrate the existence of complex solitary wave and periodic solutions of theKorteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) equations. The solutions ofthe KdV (mKdV) equation appear in complex-conjugate pairs and are even (odd) under thesimultaneous actions of parity (??) and time-reversal (??) operations. The corresponding localized solitons arehydrodynamic analogs of Bloch soliton in magnetic system, with asymptotically vanishingintensity. The ????-odd complex soliton solution is shown to beiso-spectrally connected to the fundamental sech2 solution through supersymmetry. Physically, thesecomplex solutions are analogous to the experimentally observed grey solitons of non-liner Schödinger equation, governing the dynamics of shallow waterwaves and hence may also find physical verification.  相似文献   

19.
20.
ABSTRACT

In this paper, we present the exact solutions obtained for the space–time conformable generalized Hirota–Satsuma-coupled KdV equation and coupled mKdV equation using the Atangana’s conformable derivative. The conformable sub-equation method is applied to obtain the solutions; the solutions obtained are compared with the extended tanh-function method for the special case when the fractional order takes the integer order. The analytical solutions show that the conformable sub-equation method is very effective for the conformable-coupled KdV and mKdV equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号