首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Bienzymatic biosensor for the determination of glucose by flow injection chemiluminescence (CL) detection was proposed. Hybrids of gold nanoparticles (GNPs) and chitosan were chosen as the immobilization matrix of glucose oxidase (GOD) and horseradish peroxidase (HRP) to fabricate the biosensors with silane-pretreated glass microbeads. After the enzyme catalyzing oxidation of glucose in GOD biosensor, the produced H2O2 flowed into HRP biosensor to react with luminol. The doped GNPs in chitosan were found to enhance the classical CL reaction of luminol-H2O2-HRP. The CL enhancement was investigated in detail by CL and UV-visible spectrum. Under the optimized experimental conditions, glucose could be determined in a linear range from 0.01 to 6.0 mmol/L with a detection limit of 5.0 μmol/L at 3σ. The accuracy of the proposed method was examined by detecting the glucose level in four clinical serum samples from hospital. The proposed method provides a new alternative to determine glucose. Supported by the Natural Science Foundation of Shandong Province (Grant No. Q2007B03), the Doctoral Fund of Qingdao University of Science and Technology (Grant No. 0022141), and the National Natural Science Foundation of China (Grant No. 20775038)  相似文献   

2.
We report a novel bienzyme biosensor based on the assembly of the glucose oxidase (GOD) and horseradish peroxidase (HRP) onto the gold nanoparticles encapsulated mesoporous silica SBA-15 composite (AuNPs-SBA-15). Electrochemical behavior of the bienzyme bioconjugates biosensor is studied by cyclic voltammetry and electrochemical impedance spectroscopy. The results indicate that the presence of mesoporous AuNPs-SBA-15 greatly enhanced the protein loadings, accelerated interfacial electron transfer of HRP and the electroconducting surface, resulting in the realization of direct electrochemistry of HRP. Owing to the electrocatalytic effect of AuNPs-SBA-15 composite, the biosensor exhibits a sensitive response to H2O2 generated from enzymatic reactions. Thus the bienzyme biosensor could be used for the detection of glucose without the addition of any mediator. The detection limit of glucose was 0.5 μM with a linear range from 1 to 48 μM. Supported by the National Natural Science Foundation of China (Grant Nos. 20635020 & 90606016)  相似文献   

3.
A novel glucose oxidase (GOD) biosensor was fabricated with a protic ionic liquid (PIL) N-ethylimidazolium trifluoromethanesulfonate ([EIm][TfO]) as the modifier of a carbon electrode. Due to the excellent conductivity and the conformational changes of the microenvironment around the GOD, the electrochemical and biocatalytic properties of GOD immobilized on the PIL-based electrode were dramatically enhanced. A couple of well-defined redox peaks could be observed, with a formal potential of −0.476 V. The GOD biosensor presented good catalytic activity to the oxidation of glucose in oxygen-saturated phosphate buffer solutions. The cathodic peak currents of GOD decreased along with glucose concentrations. A linear response in the range 0.005–2.8 mM was obtained with a detection limit of 2.5 μM. The sensitivity and the apparent Michaelis–Menten constant (K m) were estimated to be 14.96 μA mM−1 and 1.53 μM, respectively. In addition, the biosensor remained stable over 30 days, indicating its good chemical and mechanical stability. The glucose content of several serum samples was determined by using the newly developed biosensor, and the results were in good agreement with those obtained by hospital measurements. All results suggested that PILs were a good media for supporting biocatalytic processes on the bioelectrode.  相似文献   

4.
The study of electrochemical behavior and determination of thebaine (THEB), an opiate alkaloid, is described on a multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode by adsorptive stripping voltammetry and electrochemical impedance spectroscopy. The results indicated that MWCNT electrodes remarkably enhance electrocatalytic activity toward the oxidation of THEB in a wide pH range of 2.0–10.0, and it shows two irreversible and diffusion-controlled anodic peaks. Then, a sensitive, simple, and time-saving cyclic voltammetric procedure was developed for the analysis of THEB in human urine samples. Under optimized conditions, the oxidation peak has two linear dynamic ranges of 1.0–80.0 and 100.0–600.0 μM, with detection limit of 0.23 μM and a precision of <4% (relative standard deviation for eight analysis).  相似文献   

5.
A novel glucose biosensor was constructed by immobilizing the glucose oxidase (GOD) on a hydroxyapatite (HAp)/Nafion composite film modified glassy carbon electrode (GCE) and applied to the highly selective and sensitive determination of glucose. With the cooperation of HAp and Nafion, the composite film played an important role in enhancing the stability and sensitivity of the biosensor. The results demonstrate that the GOD adsorbed onto the HAp/Nafion composite film exhibits a pair of well-defined nearly reversible redox peaks and fine catalysis to the oxidation of glucose companied with the consumption of dissolved oxygen. On the basis of the decrease of the reduction current of dissolved oxygen at the applied potential of −0.80 V (vs. SCE) upon the addition of glucose, the concentration of glucose could be detected sensitively and selectively. The decreased reduction current was linear with the concentration of glucose in the range of 0.12–2.16 mM. The detection limit and sensitivity were 0.02 mM (S/N = 3) and 6.75 mA·M−1, respectively. All the results demonstrate that HAp/Nafion composite film provides a novel and efficient platform for the immobilization of enzymes and realizes the direct electrochemistry. The composite materials should have potential applications in the fabrication of third-generation biosensors.  相似文献   

6.
An amperometric glucose biosensor was developed based on the immobilization of glucose oxidase in the organically modified silicate (ormosil)-polyvinyl acetate (PVA) matrix onto a Prussian Blue (PB)-modified glassy carbon electrode. A higher stability PB-modified electrode was prepared by the electrochemical deposition of FeCl3, K3[Fe(CN)6] and ethylenediamine tetraacetic acid (EDTA) under cyclic voltammetric (CV) conditions. The effects of the potential range of CV conditions, electrolyte cations, applied potential, pH, temperature and co-existing substances were investigated. The detection limit of the glucose biosensor was 8.1 μmol·L−1 (S/N = 3) with a linear range from 20 μmol·L−1 to 2 mmol·L−1 (R = 0.9965). The biosensor presented a fast response and good selectivity. Additionally, excellent reproducibility and stability of the biosensor were observed. Supported by the National High Technical Development Project (863 project) Foundation (Grant No. 2006AA09Z160) and the National Natural Science Foundation of China (Grant No. 20775064)  相似文献   

7.
This study reports the preparation and characterization of gold nanoparticles deposited on amine-functioned hexagonal mesoporous silica (NH2–HSM) films and the electrocatalytic oxidation of glucose. Gold nanoparticles are fabricated by electrochemically reducing chloroauric acid on the surface of NH2–HSM film, using potential step technology. The gold nanoparticles deposited have an average diameter of 80 nm and show high electroactivity. Prussian blue film can form easily on them while cycling the potential between −0.2 and 0.6 V (vs saturated calomel electrode) in single ferricyanide solution. The gold nanoparticles loading NH2–HSM-film-coated glassy carbon electrode (Au–NH2–HSM/GCE) shows strong catalysis to the oxidation of glucose, and according to the cathodic oxidation peak at about 0.16 V, the catalytic current is about 2.5 μA mM−1. Under optimized conditions, the peak current of the cathodic oxidation peak is linear to the concentration of glucose in the range of 0.2 to 70 mM. The detection limit is estimated to be 0.1 mM. In addition, some electrochemical parameters about glucose oxidation are estimated.  相似文献   

8.
A mediator-free glucose biosensor, termed a “third-generation biosensor,” was fabricated by immobilizing glucose oxidase (GOD) directly onto an oxidized boron-doped diamond (BDD) electrode. The surface of the oxidized BDD electrode possesses carboxyl groups (as shown by Raman spectra) which covalently cross-link with GOD through glutaraldehyde. Glucose was determined in the absence of a mediator used to transfer electrons between the electrode and enzyme. O2 has no effect on the electron transfer. The effects of experimental variables (applied potential, pH and cross-link time) were investigated in order to optimize the analytical performance of the amperometric detection method. The resulting biosensor exhibited fast amperometric response (less than 5 s) to glucose. The biosensor provided a linear response to glucose over the range 6.67×10−5 to 2×10−3 mol/L, with a detection limit of 2.31×10−5 mol/L. The lifetime, reproducibility and measurement repeatability were evaluated and satisfactory results were obtained.  相似文献   

9.
The electrochemical behaviour of glassy carbon electrodes coated with multiwalled carbon nanotubes (MWCNT) from three different sources and with different loadings has been compared, with a view to sensor applications. Additionally, poly(neutral red) (PNR) was electrosynthesised by potential cycling on bare glassy carbon and on MWCNT-modified glassy carbon electrodes, and characterised by cyclic voltammetry and scanning electron microscopy. Well-defined voltammetric responses were observed for hexacyanoferrate (II) oxidation with differences between the MWCNT types as well as from loading. The MWCNT and PNR/MWCNT-modified electrodes were applied to the oxidative determination of ascorbate, the electrocatalytic effects observed varying according to the type of nanotubes. Comparison was made with electrodes surface-modified by graphite powder. All modified electrode configurations with and without PNR were successfully employed for ascorbate oxidation at +0.05 V vs saturated calomel electrode with detection limits down to 4 μM; good operational stability and storage stability were also obtained.  相似文献   

10.
By immobilizing rutin at the surface of a glassy carbon electrode (GCE) modified with multi-wall carbon nanotubes (MWCNT), a new modified electrode has been fabricated and its electrochemical behavior was investigated by cyclic voltammetry. Cyclic voltammograms of the resulting modified electrode show stable and a well defined redox couple with surface confined characteristics. The results show that the reversibility of rutin is significantly improved at a MWCNT modified GCE in comparison with GCE alone. The charge transfer coefficient, α, was calculated to be 0.4, and charge transfer rate constant, ks, was 46.7 s−1 in pH 8, indicating great facilitation of the electron transfer between rutin and MWCNT deposited on the electrode surface. The rutin MWCNT (RMWCNT) modified GCE showed excellent mediation of hydrazine oxidation: a decrease in the overvoltage of hydrazine electrooxidation was observed as well as a dramatic increase in the peak current compared to that seen at a rutin modified GCE (RMGCE), activated GCE or bare GCE. Hydrazine was determined amperometrically at the surface of RMWCNT modified GCE in pH 8. Under the optimized conditions the calibration curve is linear in the concentration range 2.0–190.0 μM hydrazine. The detection limit and sensitivity are 0.61 μM and 0.0656 μA μM−1, respectively. Finally the kinetic parameters of the electron transfer coefficient, α, the heterogeneous rate constant of dependent to different potentials, k′(E), and the standard heterogeneous rate constant, k0, for oxidation of hydrazine at the RMWCNT surface were determined using various electrochemical methods. The advantages of this modified electrode for hydrazine determination are high sensitivity, excellent catalytic activity, short response time, wide linear range, and high exchange current density.  相似文献   

11.
A now polarographic immunoassay was developed In this assay,human serum albumin (HSA) as the model antigen was covalently labeled with organic compound erythrosin B(EB) containing four non-radioactive iodides through Ⅰ step chemical reaction The labeling procedure is simple and the conditions needed are moderate.The molar labeling ratio of KB HSA was 12 Ⅰ The content of iodine in the conjugate obtained by the proposed procedure is ninth higher than that by the other existing methods.A heterogeneous competitive immunoassay was established by compling the catalysis of the conjugate to substrate As(Ⅲ)-Ce(Ⅳ) reaction with the linear-sweep polarographic detec-tion of As(Ⅲ) amount HSA can be determined in the HSA concentration range from 1 to 200μg/mL,with the de-tection hum of 0 66μg/ml.  相似文献   

12.
A new tyrosinase-based biosensor was developed for detection of phenolic compounds using composite film of multiwall carbon nanotube (MWCNT)/dimethylditetradecylammonium bromide (DTDAB)/tyrosinase (Tyr) on a Nafion-incorporated carbon paste electrode. The biosensor showed a sensitive electrochemical response to the reduction of the oxidation products of different phenolic compounds (phenol, catechol, p-cresol, and p-chlorophenol) by dissolved O2 in the presence of the immobilized enzyme. The effects of pH, operating potential, MWCNT concentration, and the DTDAB/Tyr ratio on electrochemical response were explored for optimum analytical performance. The biosensor exhibited a linear response range of 1.5–25.0, 2.0–15.0, 2.0–15.0, and 2.5–25.0 μM and sensitivity of 2,900, 3,100, 3,100, and 1,500 μA/mM for phenol, catechol, p-cresol, p-chlorophenol, respectively. In addition, the response of the enzyme electrode showed Michaelis–Menten behavior at concentrations of the phenolic compounds higher than 5.0 μM. The stability and the application of the biosensor were also evaluated.  相似文献   

13.
It was found that multi-walled carbon nanotubes (MWNTs) could catalyze the redox reaction between chlorauric acid (HAuCl4) and reductive drugs such as tetracycline hydrochloride (TC), producing gold nanoparticles (Au NPs). By measuring the plasmon resonance light scattering (PRLS) signals of the resulting Au NPs, tetracycline hydrochloride can be detected simply and rapidly with a linear range of 4―26 μmol/L, a correlated coefficient (r ) of 0.9955, and a limit of detection (3σ) of 6.0 nmol/L. This method has been successfully applied to the detection of tetracycline hydrochloride tablets in clinic with the recovery of 101.9% and that of fresh urine samples with the recovery of 98.3%―102.0%.  相似文献   

14.
In this paper, an electrochemical sensor for sensitive and convenient determination of salicylic acid (SA) was constructed using well-aligned multiwalled carbon nanotubes as electrode material. Compared to the glassy carbon electrode, the electro-oxidation of SA significantly enhanced at the multiwalled carbon nanotube (MWCNT) electrode. The MWCNT electrode shows a sensitivity of 59.25 μA mM−1, a low detection limit of 0.8 × 10−6 M and a good response linear range with SA concentration from 2.0 × 10−6 to 3.0 × 10−3 M. In addition, acetylsalicylic acid was determined indirectly after hydrolysis to SA and acetic acid, which simplified the detection process. The mechanism of electrochemical oxidation of SA at the MWCNT electrode is also discussed.  相似文献   

15.
Scanning electrochemical microscopy (SECM) and scanning chemiluminescence microscopy (SCLM) were used for imaging an enzyme chip with spatially-addressed spots for glucose oxidase (GOD) and uricase microspots. For the SECM imaging, hydrogen peroxide generated from the GOD and/or uricase spots was directly oxidized at the tip microelectrode in a solution containing glucose and/or uric acid (electrochemical (EC) detection). For the SCLM imaging, a tapered glass capillary (i.d. of 1∼2 μm) filled with luminol and horseradish peroxidase (HRP) was used as the scanning probe for generating the chemiluminescence (CL). The inner solution was injected from the capillary tip at 78 pl s−1 while scanning above the enzyme-immobilized chip. The CL generated when the capillary tip was scanned above the enzyme spots was detected using a photon-counter (CL detection). Two-dimensional mapping of the oxidation current and photon-counting intensity against the tip position affords images of which their contrast reflects the activity of the immobilized GOD and uricase. For both the EC and CL detections, the signal responses were plotted as a function of the glucose and uric acid concentrations in solution. The sensitivities for the EC and CL detection were found to be comparable.  相似文献   

16.
Peng Y  Wei CW  Liu YN  Li J 《The Analyst》2011,136(19):4003-4007
This paper describes the fabrication and application of a complex electrode--Nafion film coating ferrocenylalkanethiol (FcC(11)SH) and encapsulated glucose oxidase (GOD) on a gold electrode. FcC(11)SH is employed as a mediator enabling the electron transfer between GOD and the electrode, GOD is encapsulated in polyacrylamide gel to improve the stability of the enzyme, and the Nafion film is coated on the modified electrode to eliminate interferents such as ascorbic acid, uric acid and acetaminophen in amperometric glucose detection. It is noticed that such a complex electrode exhibits excellent catalytic activity for glucose oxidation, and preserves the native structure of GOD and therefore its enzymatic activity. The encapsulated GOD retains more than 80% of its original biocatalytic activity even after 24 days, much longer than that of naked GOD molecules attached directly to the electrode. The oxidation peak current at the modified electrode shows a linear relationship with the glucose concentration in the range from 0.05 to 20 mM with a detection limit of 2.4 μM. In addition, the electrode displays a rapid response and good reproducibility for glucose detection, and has been successfully employed for glucose detection in blood plasma samples.  相似文献   

17.
The gpdA-promoter-controlled exocellular production of glucose oxidase (GOD) by recombinant Aspergillus niger NRRL-3 (GOD3-18) during growth on glucose and nonglucose carbon sources was investigated. Screening of various carbon substrates in shake-flask cultures revealed that exocellular GOD activities were not only obtained on glucose but also during growth on mannose, fructose, and xylose. The performance of A. niger NRRL-3 (GOD3-18) using glucose, fructose, or xylose as carbon substrate was compared in more detail in bioreactor cultures. These studies revealed that gpdA-promoter-controlled GOD synthesis was strictly coupled to cell growth. The gpdA-promoter was most active during growth on glucose. However, the unfavorable rapid GOD-catalyzed transformation of glucose into gluconic acid, a carbon source not supporting further cell growth and GOD production, resulted in low biomass yields and, therefore, reduced the advantageous properties of glucose. The total (endo- and exocellular) specific GOD activities were lowest when growth occurred on fructose (only a third of the activity that was obtained on glucose), whereas utilization of xylose resulted in total specific GOD activities nearly as high as reached during growth on glucose. Also, the portion of GOD excreted into the culture fluid reached similar high levels (≅ 90%) by using either glucose or xylose as substrate, whereas growth on fructose resulted in a more pelleted morphology with more than half the total GOD activity retained in the fungal biomass. Finally, growth on xylose resulted in the highest biomass yield and, consequently, the highest total volumetric GOD activity. These results show that xylose is the most favorable carbon substrate for gpdA-promoter-controlled production of exocellular GOD.  相似文献   

18.
Sphingomonas xenophaga QYY, capable of growing significantly on more than ten kinds of aromatic compounds as sole carbon source, was used to study characterization of catechol 1,2-dioxygenase (C12O) in cell extracts. Characterization of the crude C12O showed that the maximum activity was obtained at 40–70°C and pH 7.8–8.8. Metal ions had different influences on the activity of crude C12O. It was suggested that strain QYY possessed an inducible and ferric-dependent C12O. Kinetic studies showed that the value of V max and K m was 0.25 μmol catechol/L/mg protein/min and 52.85 μmol/L, respectively. In addition, the partial purification of C12O was achieved by a HiTrap Q Sepharose column chromatography. Supported by the National Natural Science Foundation of China (Grant No. 50608011) and the 39th Postdoctoral Funds of China (Grant No. 20060390983)  相似文献   

19.
A novel type of glucose sensor was fabricated based on a glucose oxidase (GOD)-N,N-dimethtylformamide (DMF)-[BMIm][BF4] composites modified three-dimensional ordered macroporous (3DOM) gold film electrode. The immobilized GOD exhibits a pair of well-defined reversible peaks in 50 mM pH 7.0 phosphate buffer solutions (PBS), which could be attributed to the redox of flavin adenine dinucleotide (FAD) in GOD. The research results show that ionic liquid ([BMIm][BF4]), DMF and 3DOM gold film are crucial for GOD to exhibit a pair of stable and reversible peaks. It is believed that the large active area of 3DOM gold film can increase the amount of immobilized GOD. Simultaneously, the application of IL enhances the stability of GOD and facilitates the electron transfer between GOD and the electrode. The synergetic effect of DMF can help the GOD to maintain its bioactivity better. GOD immobilized on the electrode exhibits the favorable electrocatalytic property to glucose, and the prepared sensor has a linear range from 10 to 125 nM with a detection limit of 3.3 nM at a signal-to-noise ratio of 3σ. The apparent K m (Michaelis- Menten constant) for the enzymatic reaction is 0.018 mM.  相似文献   

20.
We report on the fabrication of an enzyme–free electrochemical sensor for glucose based on a printed film consisting of multi–walled carbon nanotubes (MWCNTs). The MWCNT–based film can be produced by means of a flexographic printing process on a polycarbonate (PC) substrate. The electrochemical response of the MWCNT–based film (referred to as MWCNT–PC) towards the oxidation of glucose at pH 7 was studied by means of cyclic voltammetry and electrochemical impedance spectroscopy. The MWCNT–PC film exhibits substantial electrocatalytic activity towards the oxidation of glucose at an anodic potential of 0.30?V (vs. Ag/AgCl). The findings reveal that the MWCNT–PC film enables non–enzymatic sensing of glucose with a detection limit as low as 2.16?μM and a sensitivity of 1045?μA?mM?1?cm?2.
Figure
Enzyme–free electrochemical sensor for glucose consisting of multi–walled carbon nanotubes was fabricated by means of flexographic printing process on polycarbonate substrate. The sensor exhibits electrocatalytic activity for glucose oxidation at an anodic potential of 0.30?V (vs. Ag/AgCl) with detection limit of 2.16?μM and sensitivity of 1045?μA?mM?1?cm?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号