首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of undoped and chromium (Cr)-doped zinc oxide (ZnO) were synthesized by RF reactive co-sputtering for oxygen gas sensing applications. The prepared films showed a highly c-axis oriented phase with a dominant (0 0 2) peak appeared at a Bragg angle of around 34.13 °, which was lower than that of the standard reference of ZnO powder (34.42 °). The peak shifted to a slightly higher angle with Cr doping. The operating temperature of the ZnO gas sensor was around 350 °C, which shifted to around 250 °C with Cr-doping. The response of the sensor to oxygen gas was enhanced by doping ZnO with 1 at.% Cr. Impedance spectroscopy analysis showed that the resistance due to grain boundaries significantly contributed to the characteristics of the gas sensor.  相似文献   

2.
Gold colloid:ZnO nanostructures were prepared from Zn powder by using thermal oxidation technique on alumina substrates, then it was impregnated by gold colloid for comparative study. The gold colloid is the solution prepared by chemical reduction technique; it appeared red color for gold nanoparticle solution and yellow color for gold solution. The heating temperature and sintering time of thermal oxidation were 700 °C and 24 h, respectively under oxygen atmosphere. The structural characteristics of gold colloid:ZnO nanostructures and pure ZnO nanostructures were studied using filed emission scanning electron microscope (FE-SEM). From FE-SEM images, the diameter and length of gold colloid:ZnO nanostructures and ZnO nanostructures were in the ranges of 100-500 nm and 2.0-7.0 μm, respectively. The ethanol sensing characteristics of gold colloid:ZnO nanostructures and ZnO nanostructures were observed from the resistance alteration under ethanol vapor atmosphere at concentrations of 50, 100, 200, 500, and 1000 ppm with the operating temperature of 260-360 °C. It was found that the sensitivity of sensor depends on the operating temperature and ethanol vapor concentrations. The sensitivity of gold colloid:ZnO nanostructures were improved with comparative pure ZnO nanostructures, while the optimum operating temperature was 300 °C. The mechanism analysis of sensor revealed that the oxygen species on the surface was O2−.  相似文献   

3.
Hydrogen sensing characteristics of thick films of nanoparticles (∼35 nm diameter) of ZnO, 3% Co doped ZnO, 1% Pt-impregnated ZnO and 1% Pt-impregnated 3% Co-ZnO have been investigated. The last composition exhibits the highest sensitivity for 10-1000 ppm H2, reaching values upto 1700 as well as good response and recovery times at 125 °C or lower. The sensor is not affected significantly upto 50% relative humidity.  相似文献   

4.
The ZnO nanowires have been prepared and studied as the sensing element for the detection of ammonia. The ZnO nanowires were first synthesized by evaporating high purity zinc pellets at 900 °C and then distributed onto the electrode surfaces of quartz crystals at room temperatures. Gas sensitive properties of ZnO nanowires layer were studied in terms of the quartz crystal microbalance (QCM) at room temperature. It is found that the obtained response of the sensors varied with the thickness of the ZnO nanowires layer. ZnO nanowires showed high sensitivity to ammonia in the range of 40-1000 ppm. The response time of the sensor was as fast as ∼5 s at any concentration (40-1000 ppm) of ammonia gas. The ZnO nanowires-coated sensors have a good frequency stability and reproducibility. All results demonstrated that the ZnO nanowire was a potential gas sensing material for practical use.  相似文献   

5.
Transparent conducting indium doped zinc oxide was deposited on glass substrate by ultrasonic spray method. The In doped ZnO samples with indium concentration of 3 wt.% were deposited at 300, 350 and 400 °C with 2 min of deposition time. The effects of substrate temperature and annealing temperature on the structural, electrical and optical properties were examined. The DRX analyses indicated that In doped ZnO films have polycrystalline nature and hexagonal wurtzite structure with (0 0 2) preferential orientation and the maximum average crystallite size of ZnO: In before and annealed at 500 °C were 45.78 and 55.47 nm at a substrate temperature of 350 °C. The crystallinity of the thin films increased by increasing the substrate temperature up 350 °C, the crystallinity improved after annealing temperature at 500 °C. The film annealed at 500 °C and deposited at 350 °C show lower absorption within the visible wavelength region. The band gap energy increased from Eg = 3.25 to 3.36 eV for without annealing and annealed films at 500 °C, respectively, indicating that the increase in the transition tail width. This is due to the increase in the electrical conductivity of the films after annealing temperature.  相似文献   

6.
In this work, thin ZnO films have been produced by pulsed laser deposition on side-polished fiber for optical gas sensor applications. The influence was investigated of the processing parameters, such as substrate temperature and oxygen pressure applied during deposition, on the sensitivity to ammonia of the sensing element. A shift of the spectral position of the resonance minimum to the longer wavelengths was observed at room temperature for the sample prepared at 150 °C substrate temperature and 20 Pa oxygen pressure. Spectral changes in the range 0.16-1.13 nm for NH3 concentrations between 500 and 5000 ppm were also observed.  相似文献   

7.
A simple growth route towards ZnO thin films and nanorods   总被引:1,自引:0,他引:1  
Highly orientated ZnO thin films and the self-organized ZnO nanorods can be easily prepared by a simple chemical vapor deposition method using zinc acetate as a source material at the growth temperature of 180 and 320 °C, respectively. The ZnO thin films deposited on Si (100) substrate have good crystallite quality with the thickness of 490 nm after annealing in oxygen at 800 °C. The ZnO nanorods grown along the [0001] direction have average diameter of 40 nm with length up to 700 nm. The growth mechanism for ZnO nanorods can be explained by a vapor-solid (VS) mechanism. Photoluminescence (PL) properties of ZnO thin films and self-organized nanorods were investigated. The luminescence mechanism for green band emission was attributed to oxygen vacancies and the surface states related to oxygen vacancy played a significant role in PL spectra of ZnO nanorods.  相似文献   

8.
ZnO nanorods, nanobelts, nanowires, and tetrapod nanowires were synthesized via thermal evaporation of Zn powder at temperatures in the range 550-600 °C under flow of Ar or Ar/O2 as carrier gas. Uniform ZnO nanowires with diameter 15-25 nm and tetrapod nanowires with diameter 30-50 nm were obtained by strictly controlling the evaporation process. Our experimental results revealed that the concentration of O2 in the carrier gas was a key factor to control the morphology of ZnO nanostructures. The gas sensors fabricated from quasi-one-dimensional (Q1D) ZnO nanostructures exhibited a good performance. The sensor response to 500 ppm ethanol was up to about 5.3 at the operating temperature 300 °C. Both response and recovery times were less than 20 s. The gas-sensing mechanism of the ZnO nanostructures is also discussed and their potential application is indicated accordingly.  相似文献   

9.
Cu-Zn/ZnO nanocomposites with a novel core-shell structure have been prepared by a surface precipitation process in aqueous solution. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy are employed to analyze the structure and morphology of the present products. The influence of the annealing temperature on the core-shell structure of the nanocomposites is investigated, and a possible growth model is proposed. Furthermore, the gas sensors based on the Cu-Zn/ZnO nanocomposites are fabricated and tested, which exhibits high sensitivity and fast response to CO. The best results are obtained for the sensor based on the film annealed at 350 °C, which shows that the sensitivity is about 6.3 when the sensor is exposed to 100 ppm CO at the operating temperature of 240 °C. The possible sensing mechanism of the Cu-Zn/ZnO sensing film has also been discussed.  相似文献   

10.
ZnO thin films were prepared by thermal oxidation of Zn metal at 400 °C for 30 and 60 min. The XRD results showed that the Zn metal was completely converted to ZnO with a polycrystalline structure. The sensors had a maximum response to H2 at 400 °C and showed stable behavior for detecting H2 gases in the range of 40 to 160 ppm. The film oxidized for 60 min in oxygen flow exhibited higher response than that of the 30 min oxidation which was approximately 4000 for 160 ppm H2 gas concentration. The sensing mechanism was modeled according to the oxygen-vacancy model.  相似文献   

11.
Zirconium doped zinc oxide thin films with enhanced optical transparency were prepared on Corning 1737 glass substrates at the substrate temperature of 400 °C by spray pyrolysis method for various doping concentrations of zirconium (IV) chloride in the spray solution. The X-ray diffraction studies reveal that the films exhibit hexagonal crystal structure with polycrystalline grains oriented along (0 0 2) direction. The crystalline quality of the films is found to be deteriorating with the increase of doping concentration and acquires amorphous state for higher concentration of 8 at.% in precursor solution. The average transmittance for 5 at.% (solution) zirconium doped ZnO film is significantly increased to ∼92% in the visible region of 500-800 nm. The room temperature photoluminescence (PL) spectra of films show a band edge between 3.41 and 3.2 eV and strong blue emission at 2.8 eV irrespective of doping concentration and however intensity increases consistently with doping levels. The vacuum annealing at 400 °C reduced the resistivity of the films significantly due to the coalescence of grains and the lowest resistivity of 2 × 10−3 Ω cm is observed for 3 at.% (solution) Zr doped ZnO films which envisages that it is a good candidate for stable TCO material.  相似文献   

12.
A series of Cr-doped ZnO micro-rod arrays were fabricated by a spray pyrolysis method. X-ray diffraction patterns of the samples showed that the undoped and Cr-doped ZnO microrods exhibit hexagonal crystal structure. Surface morphology analysis of the samples has revealed that pure ZnO sample has a hexagonal microrod morphology. From X-ray photoelectron spectroscopy studies, the Cr 2p3/2 binding energy is found to be 577.3 eV indicating that the electron binding energy of the Cr in ZnO is almost the same as the binding energy of Cr3+ states in Cr2O3. The optical band gap Eg decreases slightly from 3.26 to 3.15 eV with the increase of actual Cr molar fraction from x = 0.00 to 0.046 in ZnO. Photoluminescence studies at 10 K show that the incorporation of chromium leads to a relative increase of deep level band intensity. It was also observed that Cr doped samples clearly showed ferromagnetic behavior; however, 2.5 at.% Cr doped ZnO showed remnant magnetization higher than that of 1.1 at.% and 4.6 at.% Cr doped samples, while 4.6 at.% Cr doped ZnO samples had a coercive field higher than the other dopings.  相似文献   

13.
Highly transparent and conducting Chromium doped ZnO (Cr:ZnO) thin films with preferential c-axis orientation were grown on (0 0 0 1) sapphire substrates using buffer assisted pulsed laser deposition. The resistivity of Cr:ZnO thin films was found to decrease to a minimum value of ∼1.13×10−3Ω cm with the increasing Cr concentration up to ∼1.9 at.% and then increase with further increase of Cr concentration. On the contrary, the band gap and carrier concentration of Cr:ZnO thin films increased up to ∼3.37 eV and ∼2×1020 cm−3, respectively, with the increase of Cr concentration up to ∼1.9 at.%, then decreased with further increase of Cr concentration. The increase of carrier concentration and conductivity with Cr doping at low Cr concentrations (<1.9 at.%) could be attributed to the presence of Cr in +3 valence state in ZnO thus acting as donor while decrease of carrier concentration beyond ∼1.9 at.% of Cr concentration could be attributed to the charge compensating effect due to the presence of acceptor like point defects such as oxygen interstitials. This was experimentally confirmed using x-ray photoelectron spectroscopy. The observed variation in the band gap of Cr:ZnO thin films with increasing Cr doping was attributed to the competing effects of the high free carrier concentration induced Burstein-Moss blue shift and band gap narrowing.  相似文献   

14.
The Cr-doped zinc oxide (Zn0.97Cr0.03O) nanoparticles were successfully synthesized by sol-gel method. The relationship between the annealing temperature (400 °C, 450 °C, 500 °C and 600 °C) and the structure, magnetic properties and the optical characteristics of the produced samples was studied. The results indicate that Cr (Cr3+) ions at least partially substitute Zn (Zn2+) ions successfully. Energy dispersive spectroscopy (EDS) measurement showed the existence of Cr ion in the Cr-doped ZnO. The samples sintered in air under the temperature of 450 °C had single wurtzite ZnO structure with prominent ferromagnetism at room temperature, while in samples sintered in air at 500 °C, a second phase-ZnCr2O4 was observed and the samples were not saturated in the field of 10000 Oe. This indicated that they were mixtures of ferromagnetic materials and paramagnetic materials. Compared with the results of the photoluminescence (PL) spectra, it was reasonably concluded that the ferromagnetism observed in the studied samples was originated from the doping of Cr in the lattice of ZnO crystallites.  相似文献   

15.
ZnO thin films were deposited on the Si(100) substrate by rf sputtering using a 99.999% pure commercially bought and a home made target under 100 W power. The home made ZnO target, including 1–2% tungsten, was synthesized via solid state reaction. Thin films were deposited under a flow of 70% argon and 30% O2 gas mixture followed by post-deposition annealing under 1 Torr oxygen atmosphere. Both deposition and post-deposition annealing were done at 420±1 °C. The structural analyses show that the films were in the [0002] preferred direction and that W atoms are bound to the oxygen atoms by replacing the Zn host atoms. Although no specific change was observed in the magnetic properties as a result of W doping, significant changes in the electrical properties were observed, as determined by the longitudinal and transversal magneto-electrical measurements. It was found that the W impurities induce better insulating properties due to lower carrier concentration and higher resistivity values. On the other hand, the enhanced positive magnetoresistivity and the existence of polarized spin currents, which were not specific for pure ZnO thin films, were observed in W doped ZnO films below 10 K.  相似文献   

16.
ZnO nanocrystalline films have been prepared on Si(1 0 0) substrate using direct current (D.C) magnetron sputtering technique at room temperature. The thickness of nanocrystalline films almost linearly increased with deposition duration and the sizes of crystalline grains almost kept unchanged. After deposition, thermal annealing was performed at 800 °C in atmosphere for 2 h in order to improve the qualities of ZnO thin films. Scanning electron microscope (SEM) images showed the surface roughness of the films less than 45 nm. X-ray diffraction (XRD) patterns revealed the slight evolution of the crystal structures. Raman scattering spectra confirmed the data obtained from X-ray diffraction measurements.With these ZnO nanocrystalline films, prototypic gas sensors were fabricated. Both sensitivity and response of the sensors to different gases (H2 and CH4) were investigated. A quick response of time, less than 1 second to CH4 gas sensor has been achieved.  相似文献   

17.
Pd2+-doped ZnO nanotetrapods were prepared and studied for the humidity detection application. The humidity sensors developed were featured by combination of a quartz crystal microbalance (QCM) as a transducer and Pd2+-doped ZnO nanotetrapods as a sensing element. The ZnO nanotetrapods were synthesized by evaporating highly pure zinc pellets (99.999%) at 900 °C in air and PdCl2 was doped on by traditional solution mixing process. Then the mixed solution distributed onto the electrode surfaces of the quartz crystal at room temperature. Pd2+-doped ZnO nanotetrapods were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experimental results indicated that the response of the sensors varied with the different dosage PdCl2. Linear regression algorithm was used for evincing the highly linear behavior of the Pd2+-doped ZnO nanotetrapods sensor. In this humidity sensing system, the Pd2+-doped ZnO nanotetrapods sensing material coated on the gold electrode of QCM showed good sensitivity (∼74.24324 Hz/%RH (relative humidity)), reproducibility, linearity (R2 = −0.98834), short response and recovery time (less than 5 s).  相似文献   

18.
Un-doped Al (0-9 at.%) nanoparticles and doped ZnO powders were prepared by the sol-gel method. The nanoparticles were heated at 700-800 °C for 1 h in air and then analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectra and photoluminescence (PL). The results of un-doped (ZnO) and Al-doped ZnO (AZO) nanoparticles were also compared to investigate the structural characteristics and physical properties. XRD patterns of AZO powders were similar to those of ZnO powders, indicating that micro-Al ions were substituted for Zn atoms and there were no variations in the structure of the ZnO nanoparticles. From the XRD and SEM data, the grain size of the AZO nanoparticles increased from 34.41 to 40.14 nm when the annealing temperature was increased. The Raman intensity of the AZO nanoparticles (Al = 5 at.%) increased when the annealing temperature was increased. Increasing the degree of crystalline not only reduced the residual stress, but also improved the physical properties of the nanoparticles.  相似文献   

19.
The paper deals with synthesis of Sb doped ZnO nanowire by considering Si coated with Sb and Au as substrate using carbothermal evaporation method. The horizontally oriented Sb doped ZnO nanowires with a diameter of 1 μm synthesized at 900 °C, which is quite high as compared to the Pure ZnO nanowires generated without the influence of Sb at 900 °C. The nanowire synthesized at 900 °C showed a measurable lower angle of about 0.06° from XRD and suppression of A1T and E1(L0) modes in Raman spectroscopic, this confirms the incorporation of Sb in ZnO lattice. The strong exciton emission and weak deep-level emission from room temperature PL and Strong emission attributed to the radiant recombination from neutral-acceptor-bound exciton (A0X) peak accompanied by two strong and broad emission of donor acceptor pair (DAP) from low temperature PL, this confirms the use of Sb as an acceptor for ZnO.  相似文献   

20.
Zn-Sn-O (ZTO) films with continuous compositional gradient of Sn 16-89 at.% were prepared by co-sputtering of two targets of ZnO and SnO2 in a combinatorial method. The resistivities of the ZTO films were severely dependent on oxygen content in sputtering gas and Zn/Sn ratio. Except for the films with Sn 16 at.%, all the as-prepared films were amorphous and maintaining the stable amorphous states up to the annealing temperature of 450 °C. Annealing at 650 °C resulted in crystallization for all the composition, in which ZnO, Zn2SnO4, ZnSnO3, and SnO2 peaks were appeared successively with increasing Sn content. Above Sn 54 at.%, the ZTO films were deduced to have a local structure mixed with ZnSnO3 and SnO2 phases which were more conductive and stable in thermal oxidation than ZnO and Zn2SnO4 phases. The lowest resistivity of 1.9 × 10−3 Ω cm was obtained for the films with Sn 89 at.% when annealed at 450 °C in a vacuum. The carrier concentrations of the amorphous ZTO films that contained Sn contents higher than 36 at.% and annealed at 450 °C in a vacuum were proportional to the Sn contents, while the Hall mobilities were insensitive to Sn contents and leveling in the range of 23-26 cm2/V s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号