首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LiMnO2 and 0.23Li2MnO3·0.77LiMnO2 were prepared by a convenient one-step solid-state reaction from MnO2 using glucose as organic carbon resource. The crystal structure and morphology of the as-prepared materials was examined by X-ray powder diffraction and field emission scanning electron microscopy, respectively. The ration of Li to Mn was determined by means of atomic absorption spectrometry and the Li/Mn molar ratio in the products was 1.23. The electrochemical properties were investigated by charge-discharge test and electrochemical impedance measurements. The prepared composite material presented an initial discharge capacity of 45 mAh g-1 and a good cycling performance with reversible capacity of 218 mAh g-1 after 30 cycles. On the basis of the experimental results, the discharge efficiency of this composite material more than 100% was also discussed.  相似文献   

2.
Nano-sized ZrO2/MnO2/carbon clusters composite materials has been successfully obtained by the calcination of a Zr(acac)4/Mn(acac)3/epoxy resin complex under an oxygen atmosphere. The compositions of the resulting composite materials were determined using inductively coupled plasma (ICP) spectroscopy, elemental analysis and surface characterization by X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The ultraviolet–visible (UV–VIS), X-ray photoelectron spectra (XPS) and electron spin resonance (ESR) spectra of the composites were also measured. ESR spectral examinations suggest the possibility of an electron transfer in the process of MnO2 → carbon clusters → ZrO2. The visible light-responsive oxidation–reduction ability of the calcined material was also investigated.  相似文献   

3.
Manganese dioxide (MnO2) nanowires with diameter about 30-70 nm is achieved via a two-step process: first, template-free cathodic electrodeposition from aqueous solution of Mn(NO3)2 on steel substrate and followed by heat treatment. The temperature-annealed sample was studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) methods and Fourier transform infrared (FT-IR) spectroscopy. The electrochemical performance of the MnO2 sample was studied by cyclic voltammetry (CV) and chronopotentiometry in Na2SO4 solutions. The sample showed excellent supercapacitive behavior. The specific capacitance (SC) of 237 F g−1 in a potential window of 0-0.9V was obtained at the scan rate of 2 mV s−1. The SC calculated from the chronopotentiometry data is about 246 F g−1. The SC was decreased by 16% after 1000 cycles.  相似文献   

4.
MnO2/graphite electrode material is successfully synthesized by electrodeposition under supergravity field from manganese acetate and graphite suspending solution. X-ray diffraction and field emission scanning electron microscopy show that the obtained composite is γ-MnO2/graphite. The process of depositing the MnO2/graphite was shown by the schematic illustration. Galvanostatic charge/discharge and cyclic voltammograms tests are applied to investigate electrochemical performances of the composite electrodes prepared under supergravity fields. MnO2/graphite synthesized under supergravity field exhibits good discharge capacitance and the specific capacitance is 367.77 F g?1 at current density of 0.5 A g?1. It is found that supergravity field has effects on the electrochemical performances of MnO2/graphite material.  相似文献   

5.
Multiwall carbon nanotube (MWNT)/polypyrrole (PPy) fibrils were fabricated by template-free in situ electrochemical deposition of PPy over MWNTs, and characterized by electron microscopy and electrical measurements. Scanning and transmission electron microscopy studies reveal that PPy coating on the surface of nanotube is quite uniform throughout the length, with the possibility of forming unique Y-junctions. Current (I)-voltage (V) characteristics at various temperatures show nonlinearity due to tunneling and hopping contributions to transport across the barriers. AC conductivity measurements (300-4.2 K) show that the onset frequency scales with temperature, and the nanoscale connectivity in MWNT/PPy fibrils decreases with the lowering of temperature.  相似文献   

6.
The manganese oxide/multi-walled carbon nanotube (MnO2/MWNT) composite and the manganese oxide/acetylene black (MnO2/AB) composite were prepared by translating potassium permanganate into MnO2 which formed the above composite with residual carbon material using the redox deposition method and carbon as a reducer. The products were characterized by X-ray diffraction, Fourier transform infrared, and scanning electron microscope. Electrochemical properties of both the MnO2/MWNT and MnO2/AB electrodes were studied by using cyclic voltammetry, electrochemical impedance measurement, and galvanostatic charge/discharge tests. The results show that the MnO2/MWNT electrode has better electrochemical capacitance performance than the MnO2/AB electrode. The charge–discharge test showed the specific capacitance of 182.3 F·g−1 for the MnO2/MWNT electrode, and the specific capacitance of 127.2 F·g−1 for the MnO2/AB electrode had obtained, within potential range of 0–1 V at a charge/discharge current density of 200 mA·g−1 in 0.5 mol·L−1 potassium sulfate electrolyte solution in the first cycle. The specific capacitance of both the MnO2/MWNT and MnO2/AB electrodes were 141.2 F·g−1 and 78.5 F·g−1 after 1,200 cycles, respectively. The MnO2/MWNT electrode has better cycling performance. The effect of different morphologies was investigated for both MnO2/MWNT and MnO2/AB composites.  相似文献   

7.
Bulk La2/3Sr1/3MnO3 ceramic samples prepared by thermal decomposition are investigated using transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). An abnormal phenomenon, where three kinds of La2/3Sr1/3MnO3 phases with different structures and the same composition coexist in the same grain, has been observed. Besides the stable rhombohedral majority phase, the two other phases are a simple cubic structure with a=0.389 nm and a new hexagonal structure with a=0.544 nm, c=0.668 nm. The simple cubic phase is a residual phase of high-temperature due to the size effect and bondage of twin boundary. Image simulations have suggested that the new hexagonal phase is the La-Sr ordered structure with space group , which is converted from the disordered simple cubic phase. The formation mechanism of the ordered phase is explained from volume energy and interface energy considerations.  相似文献   

8.
We have chemically polymerized pyrrole in the presence of Sn-doped TiO2 nanoparticles (NPs) and TiO2 (NPs) which act as a protective pigment. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) results show a core-shell structure of pigments in which TiO2 and Sn-doped TiO2 NPs have a nucleus effect and caused a homogenous PPy core-shell type morphology leading to coverage of the TiO2 and Sn-doped TiO2 NPs by PPy deposit. The XRD results indicate that the crystalline size of polypyrrole/TiO2 NCs and polypyrrole/Sn-doped TiO2 NCs were approximately 93.46 ± 0.06 and 23.36 ± 0.06 nm respectively. The electrochemical impedance spectroscopy (EIS) results show that the performance of polypyrrole/Sn-doped TiO2 NCs is better than polypyrrole/TiO2 NCs. The results indicate that increasing the area of synthesized polypyrrole in the presence of Sn-doped TiO2 NPs can increase its ability to interact with the ions liberated during the corrosion reaction of steel in the presence of NaCl. The UV-vis results show that the band gap of TiO2 NPs increases with doped of Sn in lattice of TiO2. The increase of the band gap of TiO2 with doping of Sn can decrease the charge transfer through the coating.  相似文献   

9.
《Current Applied Physics》2014,14(4):558-562
The p-type InP:Be/Mn/InMnP:Be triple epilayers were prepared using MBE to increase Tc (>300 K) by preventing MnO2. After milling 1–3 nm of epilayers thickness from the top surface, the transmission electron microscopy (TEM) and X-ray diffraction (XRD) revealed no MnO2 and precipitates, and TEM and XRD results coincide with results of ferromagnetism. The enhanced ferromagnetic transition at >300 K corresponds to InMnP:Be. The increased ferromagnetic coupling without MnO2 is considered to originate from the increased p–d hybridation. These results demonstrate that InP-based ferromagnetic semiconductor layers having enhanced ferromagnetism can be formed by above process.  相似文献   

10.
The DC conductivity and the relative magnetic permeability have been measured as functions of temperature for five powder samples of nanoparticle ferrites (NixZn1−xFe2O4; x=0, 0.25, 0.5, 0.75 and 1), a pure polypyrrole (PPy) powder sample and many composite samples prepared by mixing different ratios of the ferrites to PPy. By comparing the results it is found that there is an obvious increase in DC conductivity of the ferrite/PPy composite samples compared to the corresponding pure ferrite samples, whereas compared to the pure PPy sample there is a decrease in DC conductivity. On the contrary, the magnetic permeability of the composites is higher than that of the pure PPy sample and lower than that of the pure ferrite samples as was expected.  相似文献   

11.
Spinel Li4Ti5O12/C powders were synthesized successfully by a simple rheological phase method using polyvinylbutyral (PVB) as both template and carbon source. The structure and morphology characteristics of the composite were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy and transmission electron microscopy. The XRD results showed that the composite had a good crystallinity. Its average particle size was about 2.1 μm with a narrow size distribution as a result of homogeneous mixing of the precursors. The in situ carbon coating produced by decomposition of PVB played an important role in improving electrical conductivity, thereby enhancing the rate capacity of Li4Ti5O12 as anode material in Li-ion batteries. The Li4Ti5O12/C composite, synthesized at 800 °C for 15 h under argon, containing 0.98 wt% of carbon, exhibited better electrochemical properties in comparison with the pristine Li4Ti5O12, which could be attributed to the enhanced electrical conductive network of the carbon coating on the particle surface.  相似文献   

12.
The calcination of a TiO(acac)2/Mn(acac)3/epoxy resin complex under an oxygen atmosphere successfully produced nano-sized TiO2/MnO2/carbon clusters composite material. The surface characterizations of the resulting composites indicate that they are composed of nano-sized particles of TiO2, MnO2 and carbon clusters. ESR spectral examination suggests the possibility of an electron transfer in the process of MnO2 → carbon clusters → TiO2. The visible light-responsive oxidation–reduction function of the composite materials has also been confirmed.  相似文献   

13.
Nickel particles with submicron size are prepared by using the solvothermal method. These spheres are then coated with a layer of MnO2 using the soft chemical method. The microstructure is characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Energy x-ray dispersive spectrometry and high-resolution images show that the granular composites have a classical core/shell structure with an MnO2 superficial layer,no more than 10 nm in thickness. The hysteresis measurements indicate that these submicron-size Ni composite powders have small remanence and moderate coercivity. The electromagnetic properties of the powders measured by a vector network analyzer in a frequency range of 2-18 GHz are also reported in detail.  相似文献   

14.
《Current Applied Physics》2019,19(6):768-774
In this work, novel hollow urchin-like MnO2 microspheres (u-MnO2), consisting of a hollow core with nanotubes, are synthesized by a simple hydrothermal process. The morphology of the MnO2 structures could be tuned from round particles to a hierarchical hollow urchin structure by controlling the hydrothermal reaction time, with no need for surfactant or templates. The nanostructures of the obtained u-MnO2 are characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The X-ray diffraction (XRD) pattern of the u-MnO2 reveals a tetragonal structure of α-MnO2. The carbon nanofibers (CNFs) are uniformly deposited on u-MnO2 to improve the electrical conductivity and to utilize the hierarchical architecture of u-MnO2. As the anode electrode of Li-ion batteries, the u-MnO2/CNFs nanocomposites exhibit discharge capacity of 988 mAh·g−1 after 100 cycles with a good rate capability. The superior electrochemical performances of the u-MnO2/CNFs nanocomposites can be attributed to the hierarchical urchin-like structures and the superior electrical conductivity of the nanocomposites, which can facilitate fast electron and ion transport and accommodate a large volume change during charge/discharge.  相似文献   

15.
The influence of Fe3O4 contents on the electrical transport properties (resistivity and ac susceptibility) of a series of composite samples of La0.67Ca0.33MnO3/Fe3O4 is studied. Results show that the Fe3O4 phase not only shifts the intrinsic insulator-metal (I-M) transition temperature TP1 to a lower temperature, but also causes a new I-M transition at a lower temperature TP2 (TP2<TP1). On the basis of an analysis by scanning electron microscopy and X-ray diffraction, we suggest that the decrease of the I-M transition temperature and the formation of the new I-M transition are caused by the segregation of a new phases related to the Fe3O4 at grain boundaries or surfaces of the La0.67Ca0.33MnO3 grains.  相似文献   

16.
In the present work, both polypyrrole (PPy) and optimized polypyrrole–magnesium ferrite (PPy-MgFe2O4) hybrid nanocomposite were synthesized separately by simple oxidative chemical polymerization method and then structurally characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The FTIR spectrum of the composite showed the presence of characteristic absorption bands of both PPy and MgFe2O4 in the composite confirming interfacial interaction of PPy with MgFe2O4. That this interaction is not affected by crystalline behaviour of predominant MgFe2O4 particles but that MgFe2O4 has embedded in PPy matrix was confirmed by XRD studies. Agglomerated granular spherical morphology of the composite was confirmed by SEM studies. Decrease in AC conductivity of the composite as compared to PPy due to the formation of interfacial heterojunction barrier between p-type PPy and n-type MgFe2O4 was confirmed experimentally and well supported theoretically by calculating binding energy, hopping distance and density of states at Fermi level of PPy and the composite as per CBH model.  相似文献   

17.
《Ultrasonics sonochemistry》2014,21(6):1933-1938
In this study, manganese oxide (MnO2) nanoparticles were synthesized by sonochemical reduction of KMnO4 using polyethylene glycol (PEG) as a reducing agent as well as structure directing agent under room temperature in short duration of time and characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) analysis. A supercapacitor device constructed using the ultrasonically-synthesized MnO2 nanoparticles showed maximum specific capacitance (SC) of 282 Fg−1 in the presence of 1 M Ca(NO3)2 as an electrolyte at a current density of 0.5 mA cm−2 in the potential range from 0.0 to 1.0 V and about 78% of specific capacitance was retained even after 1000 cycles indicating its high electrochemical stability.  相似文献   

18.
Yang Li  Huaqing Xie 《Ionics》2010,16(1):21-25
Al-doped MnO2 as electrode materials for supercapacitor were synthesized by high-energy ball milling. The morphologies and structures of prepared MnO2 were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Electrochemical investigation indicated that doped MnO2 presented preferable electrochemical performances than un-doped MnO2, but there were obvious capacitance decline in the first several dozen of cycles for all doped MnO2 samples. The Al0.05/Mn0.95O2 electrode, especially, showed the largest capacitance among all prepared MnO2 samples. Excellent conductivity of Al in doped MnO2 was considered to be responsible for enhanced electrochemical performances of doped MnO2.  相似文献   

19.
Niobium-doped MnO2/reduced graphene oxide (Nb-MnO2/RGO) composite has been successfully synthesized via a simple microwave radiation method. The samples were systematically studied by X-ray diffraction (XRD), thermogravimetric analysis (TG), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), and electrochemical measurements. As the anode material for lithium-ion batteries, the Nb-MnO2/RGO (molar ratio of Mn/Nb?=?50:1) (NMG50) showed an outstanding reversible discharge capacity of 556.6 mAh g?1 after 50 cycles with a capacity retention of 77% at a charge-discharge rate of 0.1 A g?1 and the reversible discharge capacity can still retain 223.3 mAh g?1 at a current of 1 A g?1, which is much higher than those for Nb-MnO2/RGO (molar ratio of Mn/Nb?=?10:1) (NMG10) and undoped MnO2/RGO (MG). The improved electrochemical performance could be attributed to the proper amount of Nb doping, which could enhance both the conductivity and the structure stability of MnO2.  相似文献   

20.
Novel low density TiO-TiO2-carbon black composite was synthesized, which involved the deposition of inorganic coating on the surface of core-shell latex particles and subsequent removal of latex particles by calcination in high-purity nitrogen. The morphology and interior structure were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The images exhibited the composite had spherical shape and smooth surface, and the interior structure was hollow or porous. X-ray diffraction peaks (XRD) were mostly in agreement with the standard diffraction patterns of rutile TiO2. In addition, the observed peaks at 2θ of 43.5°, 50.6° and 74.4° can be indexed to (1 1 1), (2 0 0) and (2 2 0) planes of cubic phase TiO. The X-ray photoelectron spectroscopy (XPS) results indicated that composite consisted of carbon black, TiO and TiO2. The apparent density of the composite was suitable to 1.62 g cm−3, due to density matching with suspending media. Glutin-arabic gum microcapsules containing TiO-TiO2-carbon black composite electrophoretic liquid were prepared via complex coacervation. The particles in the microcapsules showed excellent electrophoretic mobility under a DC field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号