首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Dense PdAgCu ternary alloy composite membranes were synthesized by the sequential electroless plating of Pd, Ag and Cu on top of both disk and tubular porous stainless steel substrates. X-ray diffraction and scanning electron microscopy were employed to study the structure and morphology of the tested samples. The hydrogen permeation performance of these membranes was investigated over a 350-450 °C temperature range and a trans-membrane pressure up to 100 kPa. After annealing at 500 °C in hydrogen stream followed by permeation experiments, the alloy layer presented a FCC crystalline phase with a bulk concentration of 68% Pd, 7% Ag and 25% Cu as revealed by EDS. The PdAgCu tubular membrane was found to be stable during more than 300 h on hydrogen stream. The permeabilities of the PdAgCu ternary alloy samples were higher than the permeabilities of the PdCu alloy membranes with a FCC phase. The co-segregation of silver and copper to the membrane surface was observed after hydrogen permeation experiments at high temperature as determined by XPS.  相似文献   

2.
The highly ordered TiO2 nanotube arrays were fabricated by potentiostatic anodization of Ti foils in fluorinated dimethyl sulfoxide (DMSO). TiO2 nanotube arrays are formed using a 40 V anodization potential for 24 h, with a length of 12 μm, diameter of 170 nm and aspect ration of about 70. The as-prepared nanotubes are amorphous, but can be crystallized as the heat treatment temperature increases. Anatase phase appears at a temperature of about 300 °C, then transforms to rutile phase at about 600 °C. After heat treatment at 500 °C and soaking in SBF for 14d, a thick apatite layer of about 13 μm covers the whole surface of TiO2 nanotube arrays, indicating their excellent in vitro bioactivity, which is mainly attributed to their high specific surface area and the anatase phase.  相似文献   

3.
Oxidation and deoxidation of a Pd membrane was conducted in a quartz tube oven in a temperature range of 23-500 °C. The micromorphology and chemical composition of the Pd membrane surface was characterized using scanning electronic microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Micropores and PdO began to form on the Pd membrane surface after oxidation at 240 °C for 1 h and their quantity increased gradually with increasing temperature. A rough Pd membrane surface was obtained when the temperature rose to 500 °C. The PdO on the Pd membrane surface was completely deoxidized once more using H2 at room temperature, but the rough surface morphology caused by oxidation remained. The deuterium permeability of the Pd membrane was tested using special equipment in the China National Key Laboratory and the results indicated that the rough Pd membrane surface had higher deuterium permeability than the original membrane. The improved deuterium permeability could be attributed to the higher Pd membrane surface area, which provided deuterium atoms with more adsorption sites and dissociation sites.  相似文献   

4.
In this work, 0.30 μm thick LiNbO3 layers have been deposited by sputtering on nanocrystalline diamond/Si and platinised Si substrates. The films were then analyzed in terms of their structural and optical properties. Crystalline orientations along the (0 1 2), (1 0 4) and (1 1 0) axes have been detected after thermal treatment at 500 °C in air. The films were near-stoichiometric and did not reveal strong losses or diffusion in lithium during deposition or after thermal annealing. Pronounced decrease of the roughness on top of the LiNbO3 layer and at the interface between LiNbO3 and diamond was also observed after annealing, compared to the bare nanocrystalline diamond on Si substrate. Furthermore, ellipsometry analysis showed a better density and a reduced thickness of the surface layer after post-deposition annealing. The dielectric constant and losses have been measured to 50 and less than 3.5%, respectively, for metal/insulator/metal structures with 0.30 μm thick LiNbO3 layer. The piezoelectric coefficient d33 was found to be 7.1 pm/V. Finally, we succeeded in switching local domain under various positive and negative voltages.  相似文献   

5.
Hydroxyapatite (HA) coatings with different surface roughnesses were deposited on a Ti substrate via aerosol deposition (AD). The effect of the surface roughness on the cellular response to the coating was investigated. The surface roughness was controlled by manipulating the particle size distribution of the raw powder used for deposition and by varying the coating thickness. The coatings obtained from the 1100 °C-heated powder exhibited relatively smooth surfaces, whereas those fabricated using the 1050 °C-heated powder had network-structured rough surfaces with large surface areas and were superior in terms of their adhesion strengths and in vitro cell responses. The surface roughness (Ra) values of the coatings fabricated using the 1050 °C-heated powder increased from approximately 0.65 to 1.03 μm as the coating thickness increased to 10 μm. The coatings with a rough surface had good adhesion to the Ti substrate, exhibiting high adhesion strengths ranging from 37.6 to 29.5 MPa, depending on the coating thickness. The optimum biological performance was observed for the 5 μm-thick HA coating with an intermediate surface roughness value of 0.82 μm.  相似文献   

6.
The quantity of accommodated and distribution profiles of hydrogen in 1.5-μm thick co-sputtered MgNi films after uptake of hydrogen at 800 kPa pressure within the temperature range 200-250 °C during 1 h, 3 h, 6 h and 72 h are measured. The occurring phase changes are followed by X-ray diffraction measurements at room temperature. We conclude that the hydrogenation process involves two stages: (i) the fast nucleation of the initial Mg2NiH4 layer near the substrate interface and (ii) the slow random nucleation of the same phase within the remaining part of the film. The growth of the initial hydride layer may be blocked by the surface oxide barrier layer formed during hydrogenation. We find that hydrogen-induced structural transformations are correlated with oxygen contamination and modify hydrogen storage properties.  相似文献   

7.
Yttrium trioxide (Y2O3) thin films have been deposited on silicon (1 1 1) substrates by RF magnetron sputtering. The influences of thermal exposure at high temperature in air on the structure, the surface morphology, roughness, and the refractive index of the Y2O3 thin film were investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM), and spectroscopic ellipsometry (SE). The results indicate that chemical composition of the as-deposited Y2O3 film is apparently close to the stoichiometric ratio, and it has a cubic polycrystalline structure but the crystallinity is poor. The monoclinic and cubic phases can coexist in the Y2O3 film after thermal exposure to 900 °C, and the monoclinic phase disappears completely after 300 s exposure to 950 °C. The changes of the surface morphology, roughness, and the refractive index of the Y2O3 film are closely related to the crystal structure, the internal stress, and various defects influenced by thermal exposure temperature and time.  相似文献   

8.
In this work, porous titania was prepared on bulk Ti by chemical oxidation, and then nanostructured silver (Ag) was deposited on titania surface by ion beam sputtering. After annealing treatment, Ag/TiO2 composites were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results indicated that a nano-porous titania layer with mean pore size of 150 nm and thickness of 1 μm was formed by chemical oxidation at 80 °C for 45 min. There were three Ag species (Ag (0), Ag (1+), and Ag (2+)) on composites surface after annealing treatment, and metallic Ag content achieved maximum value with annealing temperature of 500 °C in air. Ag showed high thermal stability being partly attributed to the inhibiting the diffusion of Ag by the underlying porous titania.  相似文献   

9.
Diamond film is an ultra-durable optical material with high thermal conductivity and good transmission in near-infrared and far-IR (8-14 μm) wavebands. CVD diamond is subjected to oxidation at temperature higher than 780 °C bared in air for 3 min, while it can be protected from oxidation for extended exposure in air at temperature up to 900 °C by a coating of aluminum nitride. Highly oriented AlN coatings were prepared for infrared windows on diamond films by reactive sputtering method and the average surface roughness (Ra) of the coatings was about 10 nm. The deposited films were characterized by X-ray diffraction (XRD) and atom force microscope (AFM). XRD confirmed the preferential orientation nature and AFM showed nanostructures. Optical properties of diamond films coated AlN thin film was investigated using infrared spectrum (IR) compared with that for as-grown diamond films.  相似文献   

10.
We have investigated the structure and morphology of Co and Pd clusters grown at room temperature on an alumina film on NiAl(1 1 0) by scanning tunneling microscopy, low energy ion scattering and Auger electron spectroscopy. We have also studied the clusters after annealing to 300 °C and Pd clusters deposited at 300 °C. Mixed Co-Pd clusters obtained by sequential deposition at room temperature were also studied. Pure Co deposited at room temperature forms a single type of clusters, most or all of them with close-packed planes parallel to the oxide surface. Their shape can be approximated by truncated spheres with a high contact angle of 115-125°. These clusters are stable upon annealing up to 300 °C.Pd clusters deposited at room temperature grow in two different modes. At the reflection domain boundaries the clusters grow in their thermodynamically favorable shape. The clusters do not have a single crystallographic orientation and their shape can be approximated by a truncated sphere with a high contact angle of about 110°, especially at very low coverages (below 0.05 ML). At the antiphase domain boundaries, the Pd clusters grow in (1 1 1) orientation and on some of them small (1 1 1) facets appear at their tops already at low coverages. For higher coverages of Pd, the majority of Pd clusters are rather flat with a large Pd(1 1 1) facet on top. The clusters’ shape at the antiphase domain boundaries differs from the thermodynamically favorable one, due to kinetic limitations, especially at higher coverages. Annealing the Pd clusters to 300 °C leads to re-structuring of these Pd clusters. They transform into higher and more rounded clusters and a thin disordered alumina film is formed on top of the clusters. When Pd is deposited at 300 °C, about 16% of the Pd clusters have a steep slope and rounded tops. The rest of the Pd forms lower clusters, goes subsurface and is covered by a disordered alumina film. When Co and Pd are deposited sequentially, Pd covers the Co clusters forming a shell. The resulting mixed clusters are still truncated spheres with a lowered contact angle. For deposition in the reverse order (first Pd and then Co) we found that Co forms an alloy with Pd already at room temperature.  相似文献   

11.
In this work, plasma electrolytic surface carburizing of pure iron in aqueous solution consisting of water, glycerin and NH4Cl was investigated. Surface carburizing was carried out in 20% glycerin solution treated at 750 °C, 800 °C, 900 °C and 950 °C temperatures for 5, 10 and 30 min. The formation of hard carbon-rich layer on the surface of pure iron was confirmed by XRD analysis. Metallographic and SEM studies revealed a rough and dense carburized layer on the surface of the pure iron. Experimental results showed that the thickness of the carburized layers changes with the time and temperature. The average thickness of the carburized layer ranged from 20 to 160 μm. The hardness of the carburized samples decreased with the distance from the surface to the interior of the test material. The average hardness values of the carburized layers on the substrate ranged 550-850 HV, while the hardness of the substrate ranged from 110 HV to 170 HV. The dominant phases formed on the pure iron were found to be a mixture of cementite (Fe3C), martensite (Fe + C) and austenite (FCC iron) confirmed by XRD. Wear resistance in all plasma electrolytic carburized samples is considerably improved in relation to the untreated specimen. After carburizing, surface roughness of the samples was increased. Friction coefficients were also increased because of high surface roughness.  相似文献   

12.
Thin films of Ti1−xCoxO2 (x=0 and 0.03) have been prepared on sapphire substrates by spin-on technique starting from metalorganic precursors. When heat treated in air at 550 and 700 °C, respectively, these films present pure anatase and rutile structures as shown both by X-ray diffraction and Raman spectroscopy. Optical absorption indicate a high degree of transparency in the visible region. Such films show a very small magnetic moment at 300 K. However, when the anatase and the rutile films are annealed in a vacuum of 1×10−5 Torr at 500 and 600 °C, respectively, the magnetic moment, at 300 K, is strongly enhanced reaching 0.36μB/Co for the anatase sample and 0.68μB/Co for the rutile one. The ferromagnetic Curie temperature of these samples is above 350 K.  相似文献   

13.
Samarium fluoride (SmF3) films have been deposited on quartz, silicon and germanium substrates by vacuum evaporation method. The crystal structure of the films deposited on silicon substrate is examined by X-ray diffraction (XRD). The films deposited at 100 °C, 150 °C and 250 °C have the (1 1 1) preferred growth orientation, but the film deposited at 200 °C has (3 6 0) growth orientation. The surface morphology evolution of the films with different thickness is investigated with optical microscopy. It is shown that the microcrack density and orientation of thin film is different from that of thick film. The transmission spectrum of SmF3 films is measured from 200 nm to 20 μm. It is found that this material has good transparency from deep violet to far infrared. The optical constants of SmF3 films from 200 nm to 12 μm are calculated by fitting the transmission spectrum of the films using Lorentz oscillator model.  相似文献   

14.
3C-SiC(0 0 1) surfaces are considerably rough with the roughness root mean square value (Rms) of 1.3 nm, but the surfaces become considerably smooth (i.e., Rms of 0.5 nm) by heat treatment in pure hydrogen at 400 °C. Two-step nitric acid (HNO3) oxidation (i.e., immersion in ∼40 wt% HNO3 followed by that in 68 wt% HNO3) performed after the hydrogen treatment can oxidize 3C-SiC at extremely low temperature of ∼120 °C, forming thick SiO2 (e.g., 21 nm) layers. With no hydrogen treatment, the leakage current density of the 〈Al/SiO2/3C-SiC〉 metal-oxide-semiconductor (MOS) diodes is high, while that for the MOS diodes with the hydrogen treatment is considerably low (e.g., ∼10−6 A/cm2 at the forward gate bias of 1 V) due to the formation of uniform thickness SiO2 layers. The MOS diodes with the hydrogen treatment show capacitance-voltage curves with accumulation, depletion, and deep-depletion characteristics.  相似文献   

15.
Alkali-treated titanium surfaces have earlier shown to induce bone-like apatite deposition. In the present study, the effect of surface topography of two-dimensional and pore architecture of three-dimensional alkali-treated titanium substrates on the in vitro bioactivity was investigated. Titanium plates with a surface roughness of Ra = 0.13 μm, 0.56 μm, 0.83 μm, and 3.63 μm were prepared by Al2O3 grit-blasting. Simple tetragonal and face-centered Ti6Al4V scaffolds with spatial gaps of 450-1100 μm and 200-700 μm, respectively, were fabricated by a three-dimensional fiber deposition (3DFD) technique. After alkali treatment, the titanium plates with a surface roughness of Ra = 0.56 μm were completely covered with hydroxyapatite globules after 7 days in simulated body fluid (SBF), while the coverage of the samples with other surface roughness values remained incomplete. Similarly, face-centered Ti6Al4 scaffolds with spatial gaps of 200-700 μm exhibited a full surface coverage after 21 days in SBF, while simple tetragonal scaffolds with spatial gaps of 450-1100 μm were only covered for 45-65%. This indicates the importance of surface topography and pore architecture for in vitro bioactivity.  相似文献   

16.
Single-phase CrN and CrAlN coatings were deposited on silicon and mild steel substrates using a reactive DC magnetron sputtering system. The structural characterization of the coatings was done using X-ray diffraction (XRD). The XRD data showed that both the CrN and CrAlN coatings exhibited B1 NaCl structure with a prominent reflection along (2 0 0) plane. The bonding structure of the coatings was characterized by X-ray photoelectron spectroscopy and the surface morphology of the coatings was studied using atomic force microscopy. Subsequently, nanolayered CrN/CrAlN multilayer coatings with a total thickness of approximately 1 μm were deposited on silicon substrates at different modulation wavelengths (Λ). The XRD data showed that all the multilayer coatings were textured along {2 0 0}. The CrN/CrAlN multilayer coatings exhibited a maximum nanoindentation hardness of 3125 kg/mm2 at a modulation wavelength of 72 Å, whereas single layer CrN and CrAlN deposited under similar conditions exhibited hardness values of 2375 and 2800 kg/mm2, respectively. Structural changes as a result of heating of the multilayer coatings in air (400-800 °C) were characterized using XRD and micro-Raman spectroscopy. The XRD data showed that the multilayer coatings were stable up to a temperature of 650 °C and peaks pertaining to Cr2O3 started appearing at 700 °C. These results were confirmed by micro-Raman spectroscopy. Nanoindentation measurements performed on the heat-treated coatings revealed that the multilayer coatings retained hardness as high as 2250 kg/mm2 after annealing up to a temperature of 600 °C.  相似文献   

17.
The synthesis and spectroscopic characterizations of size-controlled Cu and Cu2O nanoparticles forming self-assembled 2D superlattices with hexagonal packing are described. The scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) were used to characterize the octanethiol-protected copper nanoparticles. Analysis of XPS confirms the formation of oxidized copper nanoparticles. Conductivity of copper metal film (0.1 μm) on the Si wafer can be improved simply by thermal annealing of copper monolayer protected clusters (MPCs) film (4.8 ± 0.5 × 102 μΩ cm) under air at 300 °C for 1 h, and then for another 5 h under a protective atmosphere of 90% N2-10% H2.  相似文献   

18.
The properties of the surface oxide film on pure iron after electrochemical passivation and thermal annealing treatments were investigated using a variety of techniques. Passivation was carried out with an applied potential of 800 mV (vs Ag/AgCl) for 15 min in a pH 8.4 borate buffer solution at 30 °C, whilst annealing was carried out in air in an electric furnace at temperatures up to 300 °C. Analysis of the surface properties was then carried out using X-ray diffraction to determine oxide composition, a spectroscopic ellipsometer to measure the optical properties and oxide thickness, and a scanning probe microscope to measure the surface roughness using tapping mode AFM and to observe the nanoscale structure using constant height mode STM.  相似文献   

19.
This paper describes a special method of laser-based deposition to synthesize palladium-ceramic composite membranes. Thin film Pd was deposited on a ceramic substrate by Nd-YAG laser irradiation of coating precursor PdCl2 on γ-alumina substrate. The parameters of the laser processing technique were optimized to synthesize metal-ceramic composite membranes. The physical and chemical characteristics of Pd coated γ-alumina membranes were studied and compared with various other alumina membranes referenced in the literature. Hydrogen permeation experiments were performed in a CO + CO2 + CH4 + H2 environment under typical catalytic steam gasifier exit conditions. The Pd-ceramic composite showed good mechanical and thermal stability and resulted in a hydrogen permeability flux of about 0.061 mol/m2 s. The activation energy of the Pd membrane was found to be 5.39 kJ/mol in a temperature range of 900-1300 °F.  相似文献   

20.
We have studied the in situ HCl etching of Si active areas on patterned wafers. After some in situ HCl etching at 20 Torr of Si(1 0 0), we have locally obtained 2 μm long areas with misorientation angles around 4.5° towards 〈1 1 0〉. Furthermore, we have evidenced a recess shape transition from convex (T ≤ 865 °C) to concave (T ≥ 895 °C) as the etch temperature increases, with a nearly flat surface with no facets at T = 880 °C. The morphology of the etched structures at a given time, temperature and PHCl/PH2 ratio will be a function of the slope lengths and the pattern dimensions. Different kinds of surfaces (rounded areas, facets) were obtained in 3.5 μm × 3.5 μm Si windows after HCl etching at 850 °C during 300 s, depending on the stress within. Thermal oxidations can indeed be used to increase by 65 MPa up to 110 MPa the compressive stress in those Si windows which are bordered by SiO2 shallow trench isolation. An increase of the misorientation angle from 4.5° up to 6° occurred after the above-mentioned HCl etch when switching from conventional to highly strained Si windows. For the shortest etching times studied here (150 s), a selective etching of 3.5 μm × 3.5 μm Si windows edges is responsible for the misorientation. The etch is then more uniform. Stress gradients might consequently be one of the main misorientation causes. We have also probed the influence of the shallow trench isolation (STI) thickness on the misorientation. A morphological difference before HCl etching has been shown to be responsible for the transition from sloped to rounded areas. A local loading effect may prevail in this case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号