首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoluminescence measurements are used to investigate the nature of the surface layers formed on n+ Si-doped and semi-insulating Cr-doped GaAs substrates after heat-treatment at 780–830°C in H2 or He flow. At 5.5 K the heat-treated n+ substrates exhibit a band near 1.44 eV while the semi-insulating substrates are characterized by a phonon assisted transition with the zero-phonon band at 1.41 eV. Both these bands are identified with donor-acceptor pair recombination. The ionization energy of both the donor and acceptor for the 1.44 eV band is estimated to be ~ 35–40 meV and it is suggested that the acceptor is SiAs. The identities of the donor in the 1.44 eV band as well as that of the centers responsible for the emission at 1.41 eV are unknown.  相似文献   

2.
Using the theoretically calculated point-defect total-energy values of Baraff and Schlüter in GaAs, anamphoteric-defect model has been proposed by Walukiewicz to explain a large number of experimental results. The suggested amphoteric-defect system consists of two point-defect species capable of transforming into each other: the doubly negatively charged Ga vacancyV Ga 2– and the triply positively charged defect complex (ASGa+V As)3+, with AsGa being the antisite defect of an As atom occupying a Ga site andV As being an As vacancy. When present in sufficiently high concentrations, the amphoteric defect systemV Ga 2– /(AsGa+V As)3+ is supposed to be able to pin the GaAs Fermi level at approximately theE v +0.6 eV level position, which requires that the net free energy of theV Ga/(AsGa+V As) defect system to be minimum at the same Fermi-level position. We have carried out a quantitative study of the net energy of this defect system in accordance with the individual point-defect total-energy results of Baraff and Schlüter, and found that the minimum net defect-system-energy position is located at about theE v +1.2 eV level position instead of the neededE v +0.6 eV position. Therefore, the validity of the amphoteric-defect model is in doubt. We have proposed a simple criterion for determining the Fermi-level pinning position in the deeper part of the GaAs band gap due to two oppositely charged point-defect species, which should be useful in the future.  相似文献   

3.
Photoluminescence (PL) characteristics have been studied on undoped and Si-doped CuGaSe2 single crystal thin films grown on GaAs (001) substrate by migration-enhanced epitaxy. Room temperature PL spectrum of an undoped layer clearly shows free excitonic emission bands related to the minimum band-edge and to the split-off valence band, but no discernible emission has been observed in the low energy area. At 4.2 K, the excitonic emission due to the split-off valence band disappears. Instead, two additional emissions appear at 1.68 and 1.715 eV which are attributed to the bound exciton and band-to-acceptor transition. The Si doping to CuGaSe2 produces two additional PL bands around 1.61 and 1.64 eV. These PL bands are attributed to the donor acceptor pair emissions due to the doped Si impurity which probably occupies Cu or Ga sites and intrinsic Cu vacancy.  相似文献   

4.
We have mentioned previously that in the third part of the present series of papers, a variety of n-doping associated phenomena will be treated. Instead, we have decided that this paper, in which the subject treated is diffusion of Si into GaAs, shall be the third paper of the series. This choice is arrived at because this subject is a most relevent heterostructure problem, and also because of space and timing considerations. The main n-type dopant Si in GaAs is amphoteric which may be incorporated as shallow donor species SiGa + and as shallow acceptor species SiAs -. The solubility of SiAs - is much lower than that of SiGa + except at very high Si concentration levels. Hence, a severe electrical self-compensation occurs at very high Si concentrations. In this study we have modeled the Si distribution process in GaAs by assuming that the diffusing species is SiGa + which will convert into SiAs - in accordance with their solubilities and that the point defect species governing the diffusion of SiGa + are triply-negatively-charged Ga vacancies VGa 3-. The outstanding features of the Si indiffusion profiles near the Si/GaAs interface have been quantitatively explained for the first time. Deposited on the GaAs crystal surface, the Si source material is a polycrystalline Si layer which may be undoped or n+-doped using As or P. Without the use of an As vapor phase in the ambient, the As- and P-doped source materials effectively render the GaAs crystals into an As-rich composition, which leads to a much more efficient Si indiffusion process than for the case of using undoped source materials which maintains the GaAs crystals in a relatively As-poor condition. The source material and the GaAs crystal together form a heterostructure with its junction influencing the electron distribution in the region, which, in turn, affects the Si indiffusion process prominently. Received: 19 April 1999 / Accepted: 3 May 1999 / Published online: 4 August 1999  相似文献   

5.
The positron lifetime of undoped Liquid-Encapsulated Czochralski (LEC)-GaAs and Si-doped (1.3×1018 cm–3) LEC-GaAs was measured before and after irradiation with protons (dose 1×1015/cm2, 15 MeV). In Si-doped GaAs, the decrease of positron lifetime at temperatures between 10 and 300 K are due to the decrease of the positron-diffusion length and the increase of the effective shallow traps such as antisite GaAs. The annealing stage of the proton-irradiation-induced defects which show the different behavior from that of electron-irradiation-induced defects suggests that proton irradiation creates more complicated defect complexes, containing vacancies rather than isolated vacancy-type defects or simple complexes which have been observed during electron-irradiation processes. Above 700 K, proton-irradiation-induced defects such as vacancy-type defects and simple vacancy complexes are almost annealed out, while Si-induced defects such as SiGa-VGa complexes cannot be annealed out above 973 K.  相似文献   

6.
Erbium (Er) doped GaN has been studied extensively for optoelectronic applications, yet its defect physics is still not well understood. In this work, we report a first‐principles hybrid density functional study of the structure, energetics, and thermodynamic transition levels of Er‐related defect complexes in GaN. We discover for the first time that ErGa–CN–VN, a defect complex of Er, a C impurity, and an N vacancy, and ErGa–ON–VN, a complex of Er, an O impurity, and an N vacancy, form defect levels at 0.18 eV and 0.46 eV below the conduction band, respectively. Together with ErGa–VN, a complex of Er and an N vacancy which has recently been found to produce a donor level at 0.61 eV, these defect complexes provide explanation for the Er‐related defect levels observed in experiments. The role of these defects in optical excitation of the luminescent Er center is also discussed.  相似文献   

7.
The form of the solubility curves for tin in both LPE and VPE grown GaAs are rationalised by a thermodynamic model which presumes that the dominant acceptor state due to tin is the donor-gallium vacancy complex SnGaV?Ga rather than the commonly postulated Sn?As.In LPE growth from tin-rich solutions where the arsenic concentration in the melt exceeds the gallium concentration, very low electron mobilities have been reported and this is shown to arise from auto-compensation of the Sn+Ga donors by the SnGaV?Ga acceptors.  相似文献   

8.
The GaAs granular films have been prepared by electrochemical anodic etching of n-GaAs in HCl electrolyte at different etching temperatures. The microstructure and optical properties of the films were investigated by micro-Raman spectrum, atomic force microscopy (AFM) and photoluminescence (PL) spectroscopy. Raman spectra reveal marked redshift and broadening, which could be explained by phonon confinement model. Results show the GaAs nanocrystalline films have formed during the anodic etching process under certain chemical conditions. Two “infrared” PL bands at ∼860 nm and ∼920 nm and a strongly enhanced visible PL band envelope around 550 nm were observed in the film prepared at etching temperature of 50 °C. The “green” PL band envelope is attributed to both quantum confinement in GaAs nanocrystals and PL of Ga2O3 and As2O3. The results reveal that the energy band structure of GaAs granular films is closely related to the etching temperatures. PACS 81.07.Bc; 78.30.Fs; 78.55.Cr  相似文献   

9.
We study the electrical properties and emission mechanisms of Zn-doped β-Ga2O3 film grown by pulsed laser deposition through Hall effect and cathodoluminescence which consist of ultraviolet luminescence (UV), blue luminescence (BL) and green luminescence (GL) bands. The Hall effect measurements indicate that the carrier concentration increases from 7.16×1011 to 6.35×1012 cm−3 with increasing a nominal Zn content from 3 to 7 at%. The UV band at 272 nm is not attributed to Zn dopants and ascribed as radiative electron transition from conduction band to a self-trapped hole while the BL band is attributable to defect level related to Zn dopant. The BL band has two emission peaks at 415 and 455 nm, which are ascribed to the radiative electron transition from oxygen vacancy (VO) to valence band and recombination of a donor–acceptor pair (DAP) between VO donor and Zn on Ga site (ZnGa) acceptor, respectively. The GL band is attributed to the phonon replicas’ emission of the DAP. The acceptor level of ZnGa is estimated to be 0.26 eV above the valence band maximum. The transmittance and absorption spectra prove that the Zn-doped β-Ga2O3 film is a dominantly direct bandgap material. The results of Hall and cathodoluminescence measurements imply that the Zn dopant in β-Ga2O3 film will form an acceptor ZnGa to produce p-type conductivity.  相似文献   

10.
We have investigated the temperature-dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x≈0.1–0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. All the layers doped with manganese exhibited n-type conductivity with Curie temperature over 350 K. The efficient PL are peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. It was found that the blue band at 3.29 eV is mostly associated with the formation complexes between donors (e.g., N vacancy) and Mn acceptors, which results in forming donor levels at 0.23 eV below the conduction band edge. The yellow band is attributed to intrinsic gallium defects. The broad band at 1.86 eV is attributed to inner 5D state transition (T2 to E) of Mn ions.  相似文献   

11.
The feasibility of normal GaAs, low-temperature-grown GaAs (LT-GaAs) and low-temperature-grown InGaAs (LT-InGaAs) as the capping layers for impurity-free vacancy disordering (IFVD) of the In0.2Ga0.8As/GaAs multiquantum-well (MQW) structure has been studied. The normal GaAs, LT-GaAs and LT-InGaAs layers were tested as the outermost capping layer and the intermediate cap layer underneath the SiO2 or Si3N4 capping layer. The degree of quantum-well intermixing (QWI) induced by rapid thermal annealing was estimated by the shift of the photoluminescence (PL) peak energy. It was found that the IFVD of the In0.2Ga0.8As/GaAs MQW structure using LT-GaAs (LT-InGaAs) as the outermost capping layer was much smaller (larger) than that using a SiO2 (Si3N4) capping layer. It was also observed that the insertion of the normal GaAs, LT-GaAs and LT-InGaAs cap layers below the SiO2 or Si3N4 capping layer reduces the degree of QWI and the PL intensity after the QWI. A plausible explanation for the influence of normal GaAs, LT-GaAs and LT-InGaAs cap layers for the QWI of the InGaAs/GaAs structure is also discussed. PACS 68.55.Ln; 73.20.Dx; 78.55.-m  相似文献   

12.
In this paper, a shift in the photoluminescence (PL) peak from blue to near-infrared region was observed in the Si+-implanted 400-nm-thick SiO2 films with the rapid thermal annealing (RTA) method only. As the Si+-fluence was 1×1016 ions/cm2, a blue band was observed in the films after RTA at 1050 °C for 5 s in dry-N2 atmosphere; then, the band shifted from blue to orange upon increasing the holding temperature of RTA to 1250 °C in the films after the isochronal RTA in dry N2. Furthermore, while the fluence was increased to 3×11016 ions/cm2 and the holding temperature was at the same range between 1050 and 1250 °C, the PL peak occurred between red and near-infrared regions. Although the RTA and conventional thermal annealing (CTA) methods produce a similar mechanism, the CTA method needs a much longer annealing-time and a higher Si+-implanted dose than the RTA method for producing the same shift and intensity of PL peak from the as-implanted sample. Therefore, the RTA method can produce the mechanism in the Si+-implanted sample with the PL energy between blue and near-infrared band in place of the CTA method.  相似文献   

13.
By selective doping (Be) of the well and barrier regions of GaAs/Al0.3Ga0.7As structures we have realized the situation where the upper Hubbard band (A+ centers) has been occupied by holes in the equilibrium. We studied the temperature behavior of the Hall effect, variable range hopping (VRH) conductivity and the photoluminescence (PL) spectra of the corresponding structures. The experimental data demonstrated that the binding energy of the A+ states significantly increases with respect to 3D case and strongly depends on the well width (9 nm, 15 nm). The localization radii of the A+ states estimated from the transport data are of the order of the well widths.  相似文献   

14.
Photoluminescence measurements made at various depths below the surface of annealed GaAs single crystals are compared with vacancy distribution profiles obtained from electrical measurements. Results on undoped n-GaAs indicate that isolated Ga or As vacancies form non radiative centers. A broad-band emission at 1.20 eV, arising from VGa-donor complexes, is observed in spectra taken from n-type samples doped with Si, Sn or Te. The intensity of the 1.20eV band varies with depth and reaches its maximum value in the region where Ga vacancies are dominant. These results show the consistency between photoluminescence and electrical measurements. A band at 1.37eV has previously been assigned to VAs-acceptor complexes. This band was observed in this study only when the samples had been annealed in ampoules prepared from quartz containing traces of Cu. It is concluded that the 1.37eV band is due to Cu contamination rather than VAs-acceptor complexes.  相似文献   

15.
The presence of an extrinsic photoluminescence (PL) band peaked at 1.356 eV at low temperature is observed, on a large number of self-assembled InAs and In0.5Ga0.5As quantum dot (QD) structures, when exciting just below the GaAs absorption edge. A detailed optical characterization allows us to attribute the 1.356 eV PL band to the radiative transition between the conduction band and the doubly ionized Cu Ga acceptor in GaAs. A striking common feature is observed in all investigated samples, namely a resonant quenching of the QD-PL when exciting on the excited level of this deep defect. Moreover, the photoluminescence excitation (PLE) spectrum of the 1.356 eV emission turns out to be almost specular to the QD PLE. This correlation between the PL efficiency of the QDs and the Cu centers evidences a competition in the carrier capture arising from a resonant coupling between the excited level of the defect and the electronic states of the wetting layer on which the QDs nucleate. The estimated Cu concentration is compatible with a contamination during the epitaxial growth. Received 13 November 2001 / Received in final form 28 May 2002 Published online 19 July 2002  相似文献   

16.
Intense room-temperature photoluminescence (PL) from the UV to the green region was observed from Zr4+-doped silica synthesized by a sol-gel process using tetraethoxysilane as the precursor, followed by thermal treatment at 500 °C in air. The wide PL band can be resolved into three components centered at 3.70, 3.25, and 2.65 eV, respectively. The intensity of the 3.25 and 2.65 eV PL bands was greatly enhanced compared with pure sol-gel silica. The 3.70 eV emission was assigned to non-bridging oxygen hole centers, while the 2.65 eV one originated from neutral oxygen vacancies (VO). The 3.25 eV PL band was most likely associated with E′ centers, as supported by electron spin resonance measurement. It was proposed that the Zr4+-doping leads to oxygen deficiency in the silica, thus resulting in enhancement of the density of VO and E′ center defects.  相似文献   

17.
We compare the gain in energy upon spin polarization for the undistorted VSi- in silicon and VGa0 in gallium phosphide. We show that this gain in energy is mainly related to the magnitude of the electron-electron interactions on the first neighbors of the vacancy. These interactions being larger for phosphorous atoms than for silicon atoms, the spin polarization energy is larger for VGa0 than for VSi?; this explains why the former is spin polarized while the latter is Jahn-Teller distorted.  相似文献   

18.
Positron-lifetime experiments have been carried out on two undoped n-type liquid encapsulated Czochralski (LEC)-grown InP samples with different stoichiometric compositions in the temperature range 10-300 K. For temperatures below 120 K for P-rich InP and 100 K for In-rich InP, the positron average lifetime began to increase rapidly and then leveled off, which was associated with the charge state change of hydrogen indium vacancy complexes from (VInH4)+ to (VInH4)0. This phenomenon was more obvious in P-rich samples that have a higher concentration of VInH4. The transformation temperature of approximately 120 K suggests that the complex VInH4 is a donor defect and that the ionization energy is about 0.01 eV. The ionization of neutral VInH4 accounted for the decrease of the positron average lifetime when the sample was illuminated with a photon energy of 1.32 eV at 70 K. These results provide evidence for hydrogen complex defects in undoped LEC InP.  相似文献   

19.
ZnO thin film with strong orientation (0 0 2) and smooth surface morphology was electrosynthesized on ITO-coated glass substrate at room temperature under pulsed voltage. Photoluminescence (PL) shows two obvious peaks: violet band and strong green band. The former is due to the free-excitonic transition and the latter is believed to arise from the single ionized oxygen vacancy (VO+). Raman scattering reveals that the 580 cm−1 mode and the shoulder peak mode at 550 cm−1 originate from the N-related local vibration mode (LVM) and E1 (LO) mode, respectively.  相似文献   

20.
Optical detection of magnetic resonance (ODMR) is reported for the single negative charge state, VZn?, of the isolated zinc vacancy in ZnS. Produced by 2.5 MeV electron irradiation, it is detected in a distant donor-acceptor (DA) pair luminescent band at 570 nm in which the vacancy acts as the acceptor. Excitation and emission spectral dependences of the VZn? ODMR signals are analyzed in terms of a configurational coordinate model. We conclude that the double acceptor level (VZn=/VZn?) is located ~1.1 eV from the valence band edge and that the trigonal Jahn-Teller relaxation energy for the VZn? state is ~0.5 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号