首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
《Applied Surface Science》2010,256(17):5463-157
An investigation of wetting and energetic properties of different lipid layers deposited on the glass surface was carried out by contact angles measurements and determination of the apparent surface free energy. The topography of the lipid layers was also determined with the help of atomic force microscopy (AFM). Two synthetic phospholipids were chosen for these studies, having the same phosphatidylcholine headgroup bound to the apolar part composed either by two saturated chains (1,2-dipalmitoyl-sn-glycero-3-phospshocholine - DPPC) or two unsaturated chains (1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPC) and one lipid (1,2,3-trihexadecanoyl-sn-glycerol - tripalmitoylglycerol - TPG). The lipid layers, from the 1st to the 5th statistical monolayer, were deposited on the glass surface from chloroform solutions by spreading.The apparent surface free energy of the deposited layers was determined by contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide), and then two concepts of interfacial interactions were applied. In the contact angle hysteresis approach (CAH) the apparent total surface free energy was calculated from the advancing and receding contact angles and surface tension of probe liquids. In the Lifshitz-van der Waals/acid-base approach (LWAB) the total surface free energy was calculated from the determined components of the energy, which were obtained from the advancing contact angles of the probe liquids only. Comparison of the results obtained by two approaches provided more information about the changes in the hydrophobicity/hydrophilicity of the layers depending on the number of monolayers and kind of the lipid deposited on the glass surface.It was found that the most visible changes in the surface free energy took place for the first two statistical monolayers irrespectively of the kind of the lipid used. Additionally, in all cases periodic oscillations from layer-to-layer in the lipid surface free energy were observed. The changes in the surface free energy correlated with those in the topography and roughness of lipid layers.  相似文献   

2.
Ellipsometric light scattering (ELS) at room temperature is applied to unilamellar vesicles (~50 nm radius) of 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in the gel phase and of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) in the liquid-crystaline phase. A high sensitivity of this technique to the local anisotropy is found. From the resulting local birefringence, a lower limit of (29 ±0.5) for the average tilt angle of the lipid chains of DPPC with respect to the membrane normal is estimated. This tilt angle value is slightly lower than literature values for the tilt angle in oriented lipid multi-bilayers on solid substrates.  相似文献   

3.
Langmuir monolayer pressure isotherms and compressibility modulus measurements of phospholipid mixtures in several Langmuir monolayer systems at the air/water interface were investigated in this study. The ultimate aim was to carry out a comparison of the elasticity modulus for monolayers with different mixtures of l,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), l,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and chicken egg yolk sphingomyelin (eSM), in the presence/absence of cholesterol (Chol). In particular, we were able to propose that the leading force beyond the phase separation into liquid expanded (LE-) and liquid condensed (LC-) phases emerges from the increasing barrier to incorporate DOPC molecules into a highly ordered LC-phase. In addition, our findings suggest that DOPC lipid molecules have a priority to incorporate in a disordered LE-phase, while DPPC and eSM prefer the ordered one. Also, Chol seems to split almost equally into both phases, indicating that Chol has no priority for either phase and there are no particular interactions between Chol and saturated lipid molecules.  相似文献   

4.
We report on the properties of 1,32-dihydroxy-dotriacontane-bis-rhodamine 101 ester (Rh101C32Rh101) in lipid bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and in liquid solvents. The results are compared with those of rhodamine 101 octadecanyl ester (Rh101C18). Both molecules are solubilized in the lipid bilayer and the Rh101 moieties are anchored in the lipid-water interface, so that the electronic transition dipole moments (S 0 S 1) are oriented preferentially in the plane of the bilayer. At low concentrations of the dyes in lipid bilayers of DOPC, the fluorescence relaxation is single exponential with a lifetime of =4.9±0.2 ns. The relative fluorescence quantum yield of C32/C18 0.95 in DOPC vesicles. These results strongly suggest that only a small fraction of the Rh101C32Rh101 molecules are quenched, by, for example, intra- or intermolecular dimers in the ground state at mole fractions of less than 0.1% in the lipid bilayers. For Rh101C32Rh101 in lipid vesicles, the steady-state and time-resolved fluorescence anisotropies are compatible with efficient intramolecular electronic energy transfer. It is concluded that nearly every Rh101C32Rh101 molecule is spanning across the lipid bilayer of DOPC.  相似文献   

5.
Electron spin echo (ESE) study was performed for spin-labeled lipids 1-palmitoyl-2-stearoyl-(5-d)-sn-glycero-3-phosphocholine in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine phospholipid bilayer. Recently (Isaev and Dzuba in J Phys Chem B 112:13285–13291, 2008), three-pulse stimulated ESE was shown to be sensitive to two types of orientational motion of spin labels in phospholipid bilayers at low temperatures (~100–150 K). The first one is fast stochastic libration, with correlation time on the nanosecond time scale. The second one is slow rotational motion, developing on the accessible for measurements microsecond time scale in a small range of reorientation angles, ~0.1°–1°. These two types of motions may be easily discriminated by dependences of the echo decay rates on the time delays between the pulses. The presence of cholesterol in lipid bilayers is found to suppress remarkably rotational motions, while on the contrary stochastic librations seem to become somewhat enhanced. These results evidence that cholesterol increases the long-time stability of lipid orientations in the bilayer, with simultaneous increase of fast fluctuations of these orientations. The former may be related to the known condensing effect of cholesterol and to raft formations, while the latter to the ordering effect.  相似文献   

6.
Data on neutron scattering in biological systems show low-temperature dynamical transition between 170 and 230 K manifesting itself as a drastic increase of the atomic mean-squared displacement, 〈x2〉, detected for hydrogen atoms in the nano- to picosecond time scale. For spin-labeled systems, electron spin echo (ESE) spectroscopy—a pulsed version of electron paramagnetic resonance—is also capable of detection of dynamical transition. A two-pulse ESE decay in frozen matrixes is induced by spin relaxation arising from stochastic molecular librations, and allows to obtain the 〈α2τc parameter, where 〈α2〉 is a mean-squared angular amplitude of the motion and τc is the correlation time lying in the sub- and nanosecond time ranges. In this work, the ESE technique was applied to spin-labeled amphiphilic molecules of three different kinds embedded in bilayers of fully saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and mono-unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids. Two-pulse ESE data revealed the appearance of stochastic librations above 130 K, with the parameter 〈α2τc obeying the Arrhenius type of temperature dependence and increasing remarkably above 170–180 K. A comparison with a dry sample suggests that onset of motions is not related with lipid internal motions. Three-pulse ESE experiments (resulting in stimulated echos) in DPPC bilayers showed the appearance of slow molecular rotations above 170–180 K. For D2O-hydrated bilayers, ESE envelope modulation experiments indicate that isotropic water molecular motions in the nearest hydration shell of the bilayer appear with a rate of ~?105 s?1 in the narrow temperature range between 175 and 179 K. The similarity of the experimental data found for three different spin-labeled compounds suggests a cooperative character for the ESE-detected molecular motions. The data were interpreted within a model suggesting that dynamical transition is related with overcoming barriers, of 10–20 kJ/mol height, existing in the system for the molecular reorientations.  相似文献   

7.
Glycerol is used as a cryoprotective agent to protect biological systems under freezing conditions. Electron spin echo (ESE) spectroscopy, a pulsed version of EPR, is capable of studying low-temperature molecular motions of nitroxide spin labels. ESE technique was applied to study molecular motions in phospholipid bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with added spin-labeled lipids 1-palmitoyl-2-stearoyl-(n-DOXYL)-sn-glycero-3-phosphocholine (n-PCSL, n was optionally 5 or 16). Bilayers were hydrated (solvated) either in pure water or in a 1:1 v/v water–glycerol mixture. In the used ESE approach, there were studied stochastic (or diffusive) orientational vibrations of the molecule as a whole (i.e., stochastic molecular librations). The anisotropic contribution to the echo decay rate, W anis, was measured, which is proportional, according to theory, to the product of the mean-squared angular amplitude \(\langle \alpha^{ 2} \rangle\) and the correlation time τ c. W anis was found to be small below and to sharply increase above 200 K, for the both types of solvents and the both label positions. As compared with hydration by pure water, in presence of glycerol W anis was larger for the 5th label position while for the 16th one it did not change. Also, for the 5th label position W anis values were found to be nearly the same as those for a polar spin probe 3,4-dicarboxy-PROXYL which was separately added to the bilayer as a reference and which is assumed to be partitioned only into the solvating shell. These results indicate that motions at the surface of bilayer are governed by the motion of solvating shell while motions in the bilayer interior occur independently. The relation of the obtained data with the dynamical transition phenomenon that is known for biological substances near 200 K from neutron scattering and Mössbauer absorption is discussed.  相似文献   

8.
High-field W-band (95 GHz) electron paramagnetic resonance (EPR) study of partitioning of a small nitroxide TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) in multilamellar liposomes composed from 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) is described. The high-resolution spectra with a high signal-to-noise ratio were combined with automated least-squares simulation analysis to derive accurate partitioning coefficients of TEMPO in the membrane lipid phase and to follow the membrane phase transitions. The isotropic magnetic parameters, giso and Aiso were used to characterize the average polarity the spin label is experiencing in the membrane. We also report an empirical correlation between giso and Aiso for a set of protic and aprotic solvents and use this correlation to assign domains formed by interdigitation of DPPC bilayer under a high ethanol concentration of 1.2 M.  相似文献   

9.
Laurdan (2-dimethylamino-6-lauroylnaphthalene) is a hydrophobic fluorescent probe widely used in lipid systems. This probe was shown to be highly sensitive to lipid phases, and this sensitivity related to the probe microenvironment polarity and viscosity. In the present study, Laurdan was incorporated in 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG), which has a phase transition around 41°C, and DLPC (1,2-dilauroyl-sn-glycero-3-phosphocholine), which is in the fluid phase at all temperatures studied. The temperature dependence of Laurdan fluorescent emission was analyzed via the decomposition into two gaussian bands, a short- and a long-wavelength band, corresponding to a non-relaxed and a water-relaxed excited state, respectively. As expected, Laurdan fluorescence is highly sensitive to DPPG gel–fluid transition. However, it is shown that Laurdan fluorescence, in DLPC, is also dependent on the temperature, though the bilayer phase does not change. This is in contrast to the rather similar fluorescent emission obtained for the analogous hydrophilic probe, Prodan (2-dimethylamino-6-propionylnaphthalene), when free in aqueous solution, over the same range of temperature. Therefore, Laurdan fluorescence seems to be highly dependent on the lipid bilayer packing, even for fluid membranes. This is supported by Laurdan fluorescence anisotropy and spin labels incorporated at different positions in the fluid lipid bilayer of DLPC. The latter were used both as structural probes for bilayer packing, and as Laurdan fluorescence quenchers. The results confirm the high sensitivity of Laurdan fluorescence emission to membrane packing, and indicate a rather shallow position for Laurdan in the membrane.  相似文献   

10.
We use the optical birefringence of 1,2-dipalmitoylphosphatidycholine bilayers (DPPC) in the gel (Lβ′) phase to study recombination dynamics of topological defects. The birefringence of anisotropic thin films, such as the Lβ′ phase of DPPC bilayers, is related to their molecular polarizability, different on the heads and the acyl chains. When the sample is cooled down into the Lβ′ phase, a period of rapid recombination (taking place over a few seconds) is followed by slow dynamics with metastable states existing in excess of several minutes. After this, either another metastable state or a truly stable state remains where no further change is observed, although a spatially non-uniform distribution of the orientation of the birefringence remains. We compare our results with a model for the free energy and the dynamics of the lipid bilayer in the gel state, finding good qualitative agreement.  相似文献   

11.
Liposomes are widely applied in research, diagnostics, medicine and in industry. In this study we show for the first time the effect of hydrodynamic cavitation on liposome stability and compare it to the effect of well described chemical, physical and mechanical treatments. Fluorescein loaded giant 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid vesicles were treated with hydrodynamic cavitation as promising method in inactivation of biological samples. Hydrodynamic treatment was compared to various chemical, physical and mechanical stressors such as ionic strength and osmolarity agents (glucose, Na+, Ca2+, and Fe3+), free radicals, shear stresses (pipetting, vortex mixing, rotational shear stress), high pressure, electroporation, centrifugation, surface active agents (Triton X-100, ethanol), microwave irradiation, heating, freezing-thawing, ultrasound (ultrasonic bath, sonotrode). The fluorescence intensity of individual fluorescein loaded lipid vesicles was measured with confocal laser microscopy. The distribution of lipid vesicle size, vesicle fluorescence intensity, and the number of fluorescein loaded vesicles was determined before and after treatment with different stressors. The different environmental stressors were ranked in order of their relative effect on liposome fluorescein release. Of all tested chemical, physical and mechanical treatments for stability of lipid vesicles, the most detrimental effect on vesicles stability had hydrodynamic cavitation, vortex mixing with glass beads and ultrasound. Here we showed, for the first time that hydrodynamic cavitation was among the most effective physico-chemical treatments in destroying lipid vesicles. This work provides a benchmark for lipid vesicle robustness to a variety of different physico-chemical and mechanical parameters important in lipid vesicle preparation and application.  相似文献   

12.
Cellular membranes of mammals are composed of a complex assembly of diverse phospholipids. Sphingomyelin (SM) and phosphatidylcholine (PC) are important lipids of eukaryotic cellular membranes and neuronal tissues, and presumably participate in the formation of membrane domains, known as "rafts," through intermolecular interaction and lateral microphase decomposition. In these two-dimensional membrane systems, lateral diffusion of lipids is an essential dynamic factor, which might even be indicative of lipid phase separation process. Here, we used pulsed field gradient nuclear magnetic resonance to study lateral diffusion of lipid components in macroscopically oriented bilayers composed of equimolar mixtures of natural SMs of egg yolk, bovine brain, bovine milk and dipalmitoylphosphatidylcholine (DPPC) with dioleoylphosphatidylcholine (DOPC). In addition, differential scanning calorimetry was used as a complementary technique to characterize the phase state of the lipid bilayers. In fully liquid bilayers, the lateral diffusion coefficients in both DOPC/DPPC and DOPC/SM systems exhibit mean values of the pure bilayers. For DOPC/SM bilayer system, this behavior can be explained by a model where most SM molecules form short-lived lateral domains with preferential SM-SM interactions occurring within them. However, for bilayers in the presence of their low-temperature gel phase, lateral diffusion becomes complicated and cannot simply be understood solely by a simple change in the liquid phase decomposition.  相似文献   

13.
ABSTRACT

Due to the photobiology of the flavoproteins DNA photolyase and cryptochrome, electron transfer reactions between flavins and tryptophan are of significant biological relevance. In addition, electron transfer across vesicle membranes has also seen much attention. In this work, we study the electron transfer reaction between flavins and tryptophan across lipid bilayer membranes in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine small unilamellar vesicles using time-resolved optical absorption microspectroscopy and magnetically affected reaction yield spectroscopy. We demonstrate that riboflavin tetrabutyrate is embedded in the vesicle bilayer and can undergo electron transfer with tryptophan molecules in either the inner water pool or the bulk solution. Remarkably, flavin mononucleotide encapsulated in the inner water pool can undergo electron transfer across the vesicle bilayer to generate a magnetically sensitive radical pair with tryptophan molecules located in the bulk solution. The observed kinetics suggest that back electron transfer occurs between radical pairs generated by diffusive reencounter, either in the vesicle surface water or via electron hopping through degenerate electron exchange.  相似文献   

14.
We have controlled the structure of self-assembled systems by introducing charges (charge effect) and polymeric tails (steric effects) on a spherical–cylindrical shape of nonionic surfactant micelles. In detail, we studied the effects of a phospholipid (DL-α-phosphatidycholine dimyristol: DMPC) on the shape of nonionic surfactant micelles (penta-ethyleneglycol mono-n-dodecyl ether: C12E5), which has been studied in terms of an aggregation number, critical micellization concentration (CMC), second virial coefficient (A2), and hydrodynamic diameter (DH) by laser light scattering. DMPC, DOPC (DL-α-phosphatidylcholine dioleoyl), and DMPE (DL-α-phosphoethanolamin dimyristol) molecules added in C12E5 micelle solutions decrease the spontaneous curvatures, leading to an increase of the end-cap energy Ec that favors micellar growth. Based on the CMC values, the total free energy per micelle of C12E5/DMPC mixtures is estimated. The free energy per micelle of C12E5/DMPC mixtures decreases as DMPC is added. This is consistent with the decrease of A2 and the strong hydrophobicity of DMPC compared with C12E5. The average contour length, the diffusion coefficient, and the end-cap energy of mixed micelles are estimated based on the CMC and molecular specific volumes of the moiety. The end-cap energy of the mixed micelles and the average contour length increase as DMPC is added, which is also reasonable considering the molecular structure of DMPC. Furthermore, the diffusion coefficients obtained from dynamic laser light scattering are in excellent agreement with the estimated diffusion coefficients obtained from a one-dimensional growth model based on static light scattering measurements.Charged lipid (1,2-dioleoyl-3-trimethylammonium-propane) and polymer lipid (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-[poly(ethylene glycol)]) increase the spontaneous curvatures, resulting in breaking micelles into small size. When the lipids are added, the hydrodynamic diameter of the micelles of C12E5/lipids is nearly temperature independent due to the strong charge or steric repulsion.  相似文献   

15.
Conventional oxazolidine spin-labelled lipids have the axial14N-hyperfine tensorz-axis directed along the long axis of the lipid chain. Investigation of lateral ordering of the lipids in membranes requires measurement of thex-y Zeeman anisotropy of the nonaxialg-tensor at high fields. Both the lateral and transverse ordering of the lipid chains in membranes of dimyristoyl phosphatidylcholine containing 40 mol% cholesterol in the liquid-ordered phase have been studied with 94 GHz electron paramagnetic resonance spectroscopy. This has been done by using probe amounts of phosphatidylcholine systematically spin-labelled at positionsn along the length of thesn- 2 chain [n-PCSL, 1-acyl-2-(n-(4,4-dimethyloxazolidine-N-oxyl) stearoyl)-sn-glycero-3-phosphocholine]. Nonaxial (gxx?gyy) anisotropy of the spin-labelled lipid chains is detected over a wide range of temperature throughout the liquid-ordered phase. The transverse profile of lateral ordering with position,n, of chain labelling follows the profile of the rigid steroid nucleus of cholesterol. It becomes progressively averaged towards the terminal methyl group of thesn- 2 chain, in the region of the flexible hydrocarbon chain of cholesterol. The nonaxial lipid ordering may be related to lipid domain formation in membranes containing cholesterol and saturated-chain lipids.  相似文献   

16.
In cellular membranes, proteins and lipids are in sensitive macromolecular interaction influencing each other. To evaluate this interaction, the multi-drug transporter LmrA from Lactococcus lactis was functionally reconstituted in vesicles consisting of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), DMPC+10 mol% cholesterol and the model raft mixture DOPC/1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol (1:2:1) and in natural membrane lipids at 30 °C. The lateral structure and organization of these proteoliposomes were modulated using high hydrostatic pressure. A sharp pressure-induced fluid-to-gel phase transition is observed without an extended two-phase region. The possibility for lipid sorting, such as for DMPC/cholesterol bilayers, has an inhibitory effect on the LmrA activity. A fluid-like membrane phase over the whole pressure range with suitable hydrophobic matching, such as for DOPC, prevents the membrane protein from high-pressure inactivation up to 200 MPa. Under high-pressure conditions, highest LmrA activities, exceeding those at ambient pressure, are achieved for heterogeneous lipid matrices with a small hydrophobic mismatch and the ability of lipid sorting.  相似文献   

17.
The applicability of the two newly commercial available squaraine labels Square-670-NHS and Seta-635-NHS to exploring protein-lipid interactions has been evaluated. The labels were conjugated to lysozyme (Lz) (squaraine-lysozyme conjugates below referred to as Square-670-Lz and Seta-635-Lz), a structurally well-characterized small globular protein displaying the ability to interact both, electrostatically and hydrophobically with lipids. The lipid component of the model systems was represented by lipid vesicles composed of zwitterionic lipids egg yolk phosphatidylcholine (PC) and 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and their mixtures with anionic lipids either beef heart cardiolipin (CL) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), respectively. Fluorescence intensity of Square-670-Lz was found to decrease upon association with lipid bilayer, while the fluorescence intensity of Seta-635-Lz displayed more complex behavior depending on lipid-to-protein molar ratio. Covalent coupling of squaraine labels to lysozyme exerts different influence on the properties of dye-protein conjugate. It was suggested that Square-670-NHS covalent attachment to Lz molecule enhances protein propensity for self-association, while squaraine label Seta-635-NHS is sensitive to different modes of lysozyme-lipid interactions—within the L:P range 6–11, when hydrophobic protein-lipid interactions are predominant, an aggregation of membrane-bound protein molecules takes place, thereby decreasing the fluorescence intensity of Seta-635-Lz. At higher L:P values (from 22 to 148) when electrostatic interactions are enhanced fluorescence intensity of Seta-635-Lz increases with increasing lipid concentrations.  相似文献   

18.
The segmental lipid chain mobility in the gel phase of dipalmitoylphosphatidylcholine (DPPC) multilayers dispersed in buffer and in the interdigitated gel phase induced by glycerol, ethylene glycol, ethanol and chaotropic salt NaClO4 was compared by using conventional electron spin resonance (ESR) spectroscopy. The stearic acids bearing the nitroxide moiety at different positions down the acyl chain (n-NSA,n-5, 7, 10, 12 and 16) were used to characterized the chain motion, and the outer hyperfine splittings of the spectra, 2A max, were taken as indices of the rotational mobility of the chain in the gel phase. The ESR measurements revealed a gradient of increased mobility on proceeding towards the terminal methyl end in the fully hydrated gel phase of DPPC bilayers. This gradient was reduced in the interdigitated gel phase induced by ethanol and chaotropic salt NaClO4, whereas the rotational mobility throughout the length of the chain was comparable to that near the polar/apolar interface in the interdigitated gel phase in glycerol and ethylene glycol. Moreover, the motional anisotropy was much less affected by temperature in the interdigitated gel state of DPPC in glycerol and ethylene glycol as compared both to normal bilayer gel phase and to the other interdigitated DPPC systems. Finally, there was no evidence for chain interdigitation in the fluid phase of DPPC dispersions in any medium.  相似文献   

19.
Mixed monolayers of dipalmitoylposphatidylcholine (DPPC) and bilirubin (BR) were prepared on different subphases. The properties of DPPC/BR monolayer, such as collapse pressure (πcoll), limiting area per molecule (Alim), surface compressibility modulus, free energy (ΔGmix) and excess free energy (ΔGex), were investigated based on the analysis of the surface pressure-area isotherms on pure water. The results showed that DPPC and BR were miscible and formed non-ideal mixed monolayers at the air/water interface. With the molar fraction of BR (XBR) increasing, the LE-LC coexistence region of DPPC monolayer was eliminated gradually. The DPPC/BR complex (MD-B) of 1:2 stoichiometry formed as a result of the strong hydrogen bonds between the polar groups of DPPC and BR. The studies of effects of pH values and calcium ions in subphase on the DPPC/BR monolayers showed that the mixed monolayer became expanded on alkali aqueous solution and on 1 mmol/L CaCl2 aqueous solution. The orientation of DPPC and BR at air/water interface was also discussed.  相似文献   

20.
A novel continuum model is proposed to describe the deformations of a planar lipid bilayer suspended across a circular pore. The model is derived within a new theoretical framework for smectic A liquid crystals in which the usual director n , which defines the average orientation of the molecules, is not constrained to be normal to the layers. The free energy is defined by considering the elastic splay of the director, the bending and compression of the lipid bilayer, the cost of tilting the director with respect to the layer normal, the surface tension, and the weak anchoring of the director. Variational methods are used to derive the equilibrium equations and boundary conditions. The resulting boundary value problem is then solved numerically to compute the fully nonlinear displacement of the layers and tilt of the lipid molecules. A parametric study shows that an increase in surface tension produces a decrease in the deformation of the lipid bilayers while an opposite effect is obtained when increasing the anchoring strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号