首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 909 毫秒
1.
Cluster-size-dependent binding energy (BE) shifts of Ni 2p3/2 spectra in Ni clusters with respect to bulk Ni metal have been studied as a function of Ni coverage on clean rutile TiO2(0 0 1) surfaces at room temperature. Auger parameter (AP) analysis of photoelectron spectra has been employed and revealed an obvious initial state contribution at the coverage of 0.5 monolayers (ML). The initial state effect was demonstrated to be strongly affected by the substrate and was assigned to a combination of eigenvalue shift in surface core-level shift (SCLS) and charge transfer between the metal clusters and substrates. The TiO2(0 0 1) surface stoichiometry was found to introduce different charge transfer behaviors. Our results experimentally present that the Ni clusters are charged positively on stoichiomtric TiO2 surface and less positively or even negatively on various reduced surfaces.  相似文献   

2.
We test the hypothesis that electron-hole pair separation following light absorption enhances photochemistry at oxide/oxide heterojunctions which exhibit a type II or staggered band alignment. We have used hole-mediated photodecomposition of trimethyl acetic acid chemisorbed on surfaces of heterojunctions made from epitaxial α-Cr2O3 on α-Fe2O3(0001) to monitor the effect of UV light of wavelength 385 nm (3.2 eV) in promoting photodissociation. Absorption of photons of energies between the bandgaps of α-Cr2O3 (Eg = 4.8 eV) and α-Fe2O3 (Eg = 2.1 eV) is expected to be strong only in the α-Fe2O3 layer. The staggered band alignment should then promote the segregation of holes (electrons) to the α-Cr2O3 (α-Fe2O3) layer. Surprisingly, we find that the α-Cr2O3 surface alone promotes photodissociation of the molecule at  = 3.2 eV, and that any effect of the staggered band alignment, if present, is masked. We propose that the inherent photoactivity of the α-Cr2O3(0001) surface results from the creation of bound excitons in the surface which destabilize the chemisorption bond in the molecule, resulting in photodecomposition.  相似文献   

3.
The frequency dependence of the real (?′) and imaginary (?″) parts of the dielectric constant of polycrystalline hematite (α-Fe2O3) has been investigated in the frequency range 0-100 kHz and the temperature range 190-350 K, in order to reveal experimentally the electron hopping mechanism that takes place during the Morin transition of spin-flip process. The dielectric behaviour is described well by the Debye-type relaxation (α-dispersion) in the temperature regions T<233 K and T>338 K. In the intermediate temperature range 233 K<T<338 K a charge carrier mechanism takes place (electron jump from the O2− ion into one of the magnetic ions Fe3+) which gives rise to the low frequency conductivity and to the Ω-dispersion. The temperature dependence of relaxation time (τ) in the −ln τ vs 103/T plot shows two linear regions. In the first, T<238 K, τ increases with increasing T implying a negative activation energy −0.01 eV, and in the second region T>318 K τ decreases as the temperature increases implying a positive activation energy 0.12 eV. The total reorganization energy (0.12-0.01) 0.11 eV is in agreement with the adiabatic activation energy 0.11 eV given by an ab initio model in the literature. The temperature dependence of the phase shift in the frequencies 1, 5, 10 kHz applied shows clearly an average Morin temperature TMo=284±1 K that is higher than the value of 263 K corresponding to a single crystal due to the size and shape of material grains.  相似文献   

4.
Cluster-size-dependent binding energy (BE) shifts of Ni 2p3/2 spectra in Ni clusters with respect to bulk Ni metal have been studied as a function of Ni coverage on clean rutile TiO2(0 0 1) and TiO2(1 1 0) surfaces at room temperature. As a common method to distinguish initial and final state contributions to the core-level binding energy shifts in clusters, Auger parameter (AP) analysis of photoelectron spectra has been employed and reveals an obvious initial state contribution at the coverage of 0.5 monolayers (ML). From a comparison of results for TiO2(0 0 1) and (1 1 0) surfaces, the initial state effect is demonstrated to be strongly affected by the substrate and is assigned to a combination of eigenvalue shift in surface core-level shift (SCLS) and charge transfer between the metal clusters and substrates. The Ni 2p3/2 BE’s of atomic Ni on TiO2(0 0 1) and (1 1 0) surfaces are deduced to be 853.69 and 853.55 eV, respectively, from an extrapolation of the experimental BE curves to zero Ni coverage. Compared with atomic Ni in gas phase, relaxation shifts of 7.34 and 7.48 eV are obtained on TiO2(0 0 1) and (1 1 0) surfaces, respectively. These values are very close to the relaxation shift of 7.3 eV due to d electron screening, indicating d-like screening effects from the TiO2 substrates after Ni 2p photoionization.  相似文献   

5.
Cluster size effects of SiO2 thin film formation with size-selected O2 gas cluster ion beams (GCIBs) irradiation on Si surface were studied. The cluster size varied between 500 and 20,000 molecules/cluster. With acceleration voltage of 5 kV, the SiO2 thickness was close to the native oxide thickness by irradiation of (O2)20,000 (0.25 eV/molecule), or (O2)10,000 (0.5 eV/molecule). However, it increased suddenly above 1 eV/molecule (5000 molecules/cluster), and increased monotonically up to 10 eV/molecule (500 molecules/cluster). The SiO2 thickness with 1 and 10 eV/molecule O2-GCIB were 2.1 and 5.0 nm, respectively. When the acceleration voltage was 30 kV, the SiO2 thickness has a peak around 10 eV/molecule (3000 molecules/cluster), and it decreased gradually with increasing the energy/molecule. At high energy/molecule, physical sputtering effect became more dominant process than oxide formation. These results suggest that SiO2 thin film formation can be controlled by energy per molecule.  相似文献   

6.
The Pd-Ce interaction was studied over CeO2 (0.3-2.5 wt.%)-Pd (1 wt.%)/α-Al2O3 catalysts used in the reforming reaction of CH4 with CO2. The samples were characterized by using high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The activity and selectivity behavior was in good agreement with that of other supported metal catalysts (Ni and Pd) modified with different promoters. The preliminary results of HRTEM would indicate that the CeOx forms small crystallites around the Pd particle. The XPS analysis for the regions of Ce 3d and Pd 3d, gives an account of Ce being present mostly as Ce3+ and a high binding energy for Pd 3d5/2 (335.3 eV), an evidence of Pd-Ce chemical interaction. The Pd/Al XPS intensity ratios vs. the Pd average particle size, determined by TEM, show an excellent correlation for fresh and used catalyst. These results indicate that the diminution of the Pd/Al ratios was due to Pd sintering. Consequently, the small amounts of CeOx species do not cover the Pd particle, in agreement with the HRTEM results. The overall results stand for the promoter action mechanism of the CeOx for the reforming reaction with CO2.  相似文献   

7.
We have measured the isotope shift between 41K and 39K in the 4s1/2 → 5p1/2 transition at 405 nm using saturation spectroscopy. Our measured isotope shift is 456.1 ± 0.8 MHz, implying a residual isotope shift (sum of specific mass shift and field shift) of −52.7 ± 0.8 MHz. We deduce a specific mass shift of −40 ± 5 MHz, which would imply that the 5p1/2 state has a considerably larger specific mass shift than the 4p1/2 state. We have in addition measured the 5p1/2 hyperfine splitting for 41K.  相似文献   

8.
ZnO-Al2O3 nanocomposite thin films were prepared by sol-gel technique. The room temperature synthesis was mainly based on the successful peptization of boehmite (AlO(OH)) and Al(OH)3 compounds, so as to use it as matrix to confine ZnO nanoparticles. The relative molar concentrations of xZnO to (1 − x) Al2O3 were varied as x = 0.1, 0.2 and 0.5. The optical absorption spectra of the thin films showed intense UV absorption peaks with long tails of variable absorption in the visible region of the spectra. The ZnO-Al2O3 nanocomposites thin films were doped with MgO by varying its molar concentrations as y = 0.05, 0.75, 0.1, 0.125, 0.15 and 0.2 with respect to the ZnO present in the composite. The MgO doped thin films showed suppression of the intense absorption peaks that was previously attained for undoped samples. The disappearance of the absorption peaks was analyzed in terms of the crystalline features and lattice defects in the nanocomposite system. The bulk absorption edge, which is reportedly found at 3.37 eV, was shifted to 5.44 eV (for y = 0.05), 5.63 eV (for y = 0.075) and maximum to 5.77 eV (for y = 0.1). In contrast, beyond the concentration, y = 0.1 the absorption edges were moved to 5.67 eV (for y = 0.125), 5.61 eV (for y = 0.15) and to 5.49 eV (for y = 0.2). This trend was explained in terms of the Burstein-Moss shift of the absorption edges.  相似文献   

9.
We oxidized a Ni/Au metal bi-layer contact fabricated on HVPE Al0.18Ga0.82N from 373 K to 573 K in 100 K steps. In the range 1 kHz to 2 MHz, the Capacitance–Voltage–Frequency (C–V–f) measurements reveal a frequency dispersion of the capacitance and the presence of an anomalous peak at 0.4 V owing to the presence of interface states in the as deposited contact system. The dispersion was progressively removed by O2 anneals from temperatures as low as 373 K. These changes are accompanied by an improvement in the overall quality of the Schottky system: the ideality factor, n, improves from 2.09 to 1.26; the Schottky barrier height (SBH), determined by the Norde [1] method, increases from 0.72 eV to 1.54 eV. From the Nicollian and Goetzberger model [2], we calculated the energy distribution of the density of interface states, NSS. Around 1 eV above the Al0.18Ga0.82N valence band, NSS, decreases from 2.3×1012 eV−1 cm−2 for the un-annealed diodes to 1.3×1012 eV−1 cm−2 after the 573 K anneal. Our results suggest the formation of an insulating NiO leading to a MIS structure for the oxidized Au/Ni/Al0.18Ga0.82N contact.  相似文献   

10.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

11.
Stearic acid coated Bi2O3 nanoparticles in the size range of 5-13 nm were synthesized by the microemulsion method. HRTEM showed that the morphology of Bi2O3 nanoparticles was ellipsoidal. The absorption edge of Bi2O3 nanoparticles showed a blue shift of ∼0.45 eV, comparing with that of the bulk Bi2O3. At room temperature, Bi2O3 nanoparticles also showed a strong luminescence at 397 and 420 nm, depending on the excitation wavelength.  相似文献   

12.
13.
The absorption edge of undoped Tl2Ga2S3Se crystals have been studied through transmission and reflection measurements in the wavelength range 440–1100 nm and in the temperature range 10–300 K. The absorption edge was observed to shift toward lower energy values with increasing temperature. As a result, the rate of the indirect band gap variation with temperature γ=−2.6×10−4 eV/K and the absolute zero value of the band gap energy Egi(0)=2.42 eV were obtained.  相似文献   

14.
A composite material (hereafter referred to as NYC) containing Ni, Y2O3-stabilized ZrO2 (YSZ) and Ce0.9Ca0.1O2−δ (CC10) particles was prepared and used as the anode of solid oxide fuel cells (SOFCs). The performance of NYC was better than that of conventional Ni/YSZ anodes in terms of anodic overpotential and interface impedance. The additional CC10 particles improved the anode properties. XRD results suggest that a solid solution of YSZ and CC10 was produced. From impedance measurements, it is concluded that the solid solution exhibits substantial electronic conduction. Ni/YSZ/15 wt% Ce0.9Ca0.1O2−δ anodes exhibited the best properties over the experimental temperature range. A SOFC with an anode of Ni/YSZ/15 wt% Ce0.9Ca0.1O2−δ provided the maximum power density and current density. Addition of CC10 with an average particle size of 0.3 μm was more advantageous than that with an average size of 3 μm.  相似文献   

15.
Novel egg-shell structured monometallic Pd/SiO2 and bimetallic Ca-Pd/SiO2 catalysts were prepared by an impregnation method using porous hollow silica (PHS) as the support and PdCl2 and Ca(NO3)2·4H2O as the precursors. It was found from transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) that Pd was loaded on PHS with a particle size of 5-12 nm in Pd/SiO2 samples and the Pd particle size in Ca-Pd/SiO2 was smaller than that in Pd/SiO2 since Ca could prevent Pd particles from aggregating. X-ray photoelectron spectroscopy (XPS) analyses exhibited that Pd 3d5/2 binding energies of Pd/SiO2 and Ca-Pd/SiO2 were 0.2 and 0.9 eV lower than that of bulk Pd, respectively, as a result of the shift of the electron cloud from Pd to oxygen in Pd/SiO2 and to both oxygen and Ca in Ca-Pd/SiO2. The activity of Ca-Pd/SiO2 egg-shell catalyst for CO hydrogenation and the selectivity to methanol, with a value of 36.50 mmolCO mol−1Pd s−1 and 100%, respectively, were much higher than those of the catalysts prepared with traditional silica gel as the support, owing to the porous core-shell structure of the PHS support.  相似文献   

16.
We have attempted to characterize the magnetic and electrical properties of a new mixed-metal molecular material {NBu4[Ni(II)0.5Fe(II)0.5Fe(III)(ox)3]}N synthesized by the use of trioxalatoferrate as the building block. Mössbauer spectroscopy was utilized in order to understand local spin structures in this compound. The results indicate that the compound is a semiconducting ferrimagnet with TN=30 K and room temperature conductivity of 6×10−15 Ω−1 cm−1 along with 1.8 eV activation energy under dark. The compound has no appreciable electrical response towards illumination.  相似文献   

17.
The intrinsic formation of polyatomic defects in Sc2(WO4)3-type structures is studied by Mott Littleton calculations and Molecular Dynamics simulations. Defects involving the WO42− tetrahedron are found to be energetically favorable when compared to isolated W and O defects. WO42− Frenkel and (2Sc3+, 3WO42−) Schottky defects exhibit formation energies of 1.23 eV and 1.97 eV, respectively and therefore may occur as intrinsic defects in Sc2(WO4)3 at elevated temperatures. WO42− vacancy and interstitial migration processes have been simulated by classical Molecular Dynamics simulations. The interstitial defect exhibits a nearly 10 times higher mobility (with a migration energy of 0.68 eV), than the vacancy mechanism (with a slightly higher migration energy of 0.74 eV) and thus should dominate the overall ionic conduction. Still both models reproduce the experimental activation energy (0.67 eV) nearly within experimental uncertainty.  相似文献   

18.
Glass samples of compositions xZnO-xCeO2-(30−x)PbO-(70−x)B2O3 with x varying from 2% to 10% mole fraction are prepared by the melt quench technique. The structural and optical analysis of glasses is carried out by XRD, FTIR, density and UV-visible spectroscopic measurement techniques. The FTIR spectral analysis indicates that with the addition of ZnO contents in glass network, structural units of BO3 are transformed into BO4. It has been observed in our previous work that band gap decreases from 2.89 to 2.30 eV for CeO2-PbO-B2O3 glasses with cerium content varying from 0% to 10% [Gurinder Pal Singh, Davinder Paul Singh, Physica B 406(3) (2011) 640-644]. With the incorporation of zinc in CeO2-PbO-B2O3 glasses, the optical band gap energy decreases further from 2.38 to 2.03 eV. This causes more compaction of the borate network, which results in an increase of density (3.39-4.02 g/cm3). Transmittance shows that ZnO in glass samples acts as a reducing agent thathelps to convert Ce4+→Ce3+ ions.  相似文献   

19.
Optical transitions in normal-spinel Co3O4 have been identified by investigating the variation of its optical absorption spectrum with the replacement of Co by Zn. Three optical-transition structures were located at about 1.65, 2.4, and 2.8 eV from the measured dielectric function of Co3O4 by spectroscopic ellipsometry. The variation of the absorption structures with the Zn substitution (ZnxCo3−xO4) can be explained in terms of charge-transfer transitions involving d states of Co ions. The 1.65 eV structure is assigned to a d-d charge-transfer transition between the t2g states of octahedral Co3+ ion and t2 states of tetrahedral Co2+ ion, t2g(Co3+)→t2(Co2+). The 2.4 and 2.8 eV structures are interpreted as due to charge-transfer transitions involving the p states of O2− ion: p(O2−)→t2(Co2+) for the 2.4 eV absorption and p(O2−)→eg(Co3+) for the 2.8 eV absorption. The observed gradual reduction of the 1.65 and 2.4 eV absorption strength with the increase of the Zn composition for ZnxCo3−xO4 can be explained in terms of the substitution of the tetrahedral Co2+ sites by Zn2+ ions. The crystal-field splitting ΔOh between the eg and the t2g states of the octahedral Co3+ ion is estimated to be 2 eV.  相似文献   

20.
In this work, the synthesis of molecular materials formed from A2[TiO(C2O4)2] (A = K, PPh4) and 1,8 dihydroxyanthraquinone is reported. The synthesized materials were characterized by atomic force microscopy (AFM), infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. IR spectroscopy showed that the molecular-material thin-films, deposited by vacuum thermal evaporation, exhibit the same intra-molecular vibration modes as the starting powders, which suggests that the thermal evaporation process does not alter the initial chemical structures. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.003-1.16 eV, were calculated from Arrhenius plots. Optical absorption studies in the wavelength range of 190-1090 nm at room temperature showed that the optical band gaps of the thin films were around 1.9-2.3 eV for direct transitions Egd. The cubic NLO effects were substantially enhanced for materials synthesized from K2[TiO(C2O4)2], where χ(3) (−3ω; ω, ω, ω) values in the promising range of 10−12 esu have been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号