首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2AgBiBr6, shows attractive optical and electronic features, making it promising for high‐efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal‐engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2AgBiBr6 under ambient conditions. The band‐gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first‐principles calculations indicate that enhanced Ag–Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band‐gap narrowing effect. This work provides new insights for achieving lead‐free double perovskites with suitable band gaps for optoelectronic applications.  相似文献   

2.
Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2AgBiBr6, shows attractive optical and electronic features, making it promising for high-efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal-engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2AgBiBr6 under ambient conditions. The band-gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first-principles calculations indicate that enhanced Ag–Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band-gap narrowing effect. This work provides new insights for achieving lead-free double perovskites with suitable band gaps for optoelectronic applications.  相似文献   

3.
Despite their compositional versatility, most halide double perovskites feature large band gaps. Herein, we describe a strategy for achieving small band gaps in this family of materials. The new double perovskites Cs2AgTlX6 (X=Cl ( 1 ) and Br ( 2 )) have direct band gaps of 2.0 and 0.95 eV, respectively, which are approximately 1 eV lower than those of analogous perovskites. To our knowledge, compound 2 displays the lowest band gap for any known halide perovskite. Unlike in AIBIIX3 perovskites, the band‐gap transition in AI2BB′X6 double perovskites can show substantial metal‐to‐metal charge‐transfer character. This band‐edge orbital composition is used to achieve small band gaps through the selection of energetically aligned B‐ and B′‐site metal frontier orbitals. Calculations reveal a shallow, symmetry‐forbidden region at the band edges for 1 , which results in long (μs) microwave conductivity lifetimes. We further describe a facile self‐doping reaction in 2 through Br2 loss at ambient conditions.  相似文献   

4.
We show that the onset pressure for appreciable conductivity in layered copper‐halide perovskites can decrease by ca. 50 GPa upon replacement of Cl with Br. Layered Cu–Cl perovskites require pressures >50 GPa to show a conductivity of 10?4 S cm?1, whereas here a Cu–Br congener, (EA)2CuBr4 (EA=ethylammonium), exhibits conductivity as high as 2×10?3 S cm?1 at only 2.6 GPa, and 0.17 S cm?1 at 59 GPa. Substitution of higher‐energy Br 4p for Cl 3p orbitals lowers the charge‐transfer band gap of the perovskite by 0.9 eV. This 1.7 eV band gap decreases to 0.3 eV at 65 GPa. High‐pressure X‐ray diffraction, optical absorption, and transport measurements, and density functional theory calculations allow us to track compression‐induced structural and electronic changes. The notable enhancement of the Br perovskite's electronic response to pressure may be attributed to more diffuse Br valence orbitals relative to Cl orbitals. This work brings the compression‐induced conductivity of Cu‐halide perovskites to more technologically accessible pressures.  相似文献   

5.
Novel inorganic lead‐free double perovskites with improved stability are regarded as alternatives to state‐of‐art hybrid lead halide perovskites in photovoltaic devices. The recently discovered Cs2AgBiBr6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications. However, its practical performance is hampered by the large band gap. In this work, remarkable band gap narrowing of Cs2AgBiBr6 is, for the first time, achieved on inorganic photovoltaic double perovskites through high pressure treatments. Moreover, the narrowed band gap is partially retainable after releasing pressure, promoting its optoelectronic applications. This work not only provides novel insights into the structure–property relationship in lead‐free double perovskites, but also offers new strategies for further development of advanced perovskite devices.  相似文献   

6.
Defects, such as halide interstitials, act as charge recombination centers, induce degradation of halide perovskites, and create major obstacles to applications of these materials. Alkali metal dopants greatly improve perovskite performance. Using ab initio nonadiabatic molecular dynamics, it is demonstrated that alkalis bring favorable effects. The formation energy of halide interstitials increases by up to a factor of four in the presence of alkali dopants, and therefore, defect concentration decreases. When defects are present, alkali metals strongly bind to them. Halide interstitials introduce mid‐gap states that rapidly trap charge carriers. Alkalis eliminate the trap states, helping to maintain high current density. Further to charge trapping, the interstitials accelerate charge recombination. By passivating the interstitials, alkalis make carrier lifetimes up to seven times longer than in defect‐free perovskites and up to thirty times longer than in defective perovskites.  相似文献   

7.
Two-layer heterostructures with a high yield of charged current carriers were obtained and investigated. The heterostructures comprised monolayer dispersions of MoS2 in polyvinyl alcohol as the lower layer and the upper p-, n-, or bipolar transport layer (TL). It was found that dark conductivity of the two-layer heterostructures increased considerably compared with the conductivity of reference samples based on TL but containing no MoS2. After excitation from the TL side, maximum photoelectric sensitivity was obtained where TL long-wave absorption decreased and there was a high concentration of TL excited states at the interface that interacted with the surface of MoS2 particles. This interaction quenched the luminescence of TL transport centers and led to the photogeneration of both positively and negatively charged current carriers at the interface. Luminescence quenching could be of 50–60% at high MoS2 contents in the lower layer (90–100 wt %). This was evidence that the contact area of MoS2 particles with the polymeric transport layer exceeded the geometric interface dimensions and the interface had a relief surface (was fairly thick). It was found that the donor-acceptor properties of both MoS2 and the polymeric TL were very important for the photogeneration of charge carriers at the interface. When the MoS2 content in the lower layer was maximum, the effectiveness of the accumulation of minority carriers increased because of the formation of an alternative transport network associated with MoS2 particles. The conclusion was drawn that the photogeneration of charges at the interface resulted from the phototransfer of electrons between MoS2 particles and TL excited states.  相似文献   

8.
In this work, we studied the effect of varying the volume of mixed halide perovskites on the structural, morphological and optical properties of deposited thin films. A two-step process of spin coating and dipping technique was employed so as to enhance deposition of the films. The samples were subjected to heat treatment after each deposition cycle in order to increase the crystalinity and grain size of the films. The band gap, refractive index, dielectric constant and optical conductivity of the mixed halide perovskites were calculated. The single term Wemple DiDomenico oscillator formulae were applied in determining the expression of the parameter n below the optical band gap in relation to the energy.A significant observation in this study was that the band gap of mixed halide perovskites was extremely lowered compared to the high band energy of its halide perovskite, which reveals the band gap alteration effect of mixed halide perovskites. The refractive index and dielectric constant of the halide and mixed halide perovkites showed results in the wavelength range of 300–600 nm, which is significant for photovoltaic materials.  相似文献   

9.
All-inorganic perovskites have attracted increasing attention for applications in perovskite solar cells (PSCs) and optoelectronics, including light-emitting devices (LEDs). Cesium lead halide perovskites with tunable I/Br ratios and a band gap aligning with the sunlight region are promising candidates for PSCs. Although impressive progress has been made to improve device efficiency from the initial 2.9 % with low phase stability to over 20 % with high stability, there are still questions regarding the perovskite crystal growth mechanism, especially at low temperatures. In this Minireview, we summarize recent developments in using an organic matrix, including the addition and use of organic ions, polymers, and solvent molecules, for the crystallization of black phase inorganic perovskites at temperatures lower than the phase transition point. We also discuss possible mechanisms for this low-temperature crystallization and their effect on the stability of black phase perovskites. We conclude with an outlook and perspective for further fabrication of large-scale inorganic perovskites for optoelectronic applications.  相似文献   

10.
Because perovskite crystals exhibit unique magnetic, conductive, and optical properties, they have been the subject of many fundamental investigations in various research fields. However, investigations related to their use as optoelectronic device materials are still in their early days. Regarding oxide perovskites, which have been investigated for a long time, the efficiency of photoluminescence (PL) induced by band‐to‐band transitions is extremely low because of the localized nature of the carriers in these materials. On the other hand, halide perovskites exhibit a highly efficient band‐edge PL attributable to the recombination of delocalized photocarriers. Therefore, it is expected that this class of high‐quality materials will be advantageous for optoelectronic devices such as solar cells and light‐emitting diodes. In this Minireview, we discuss various aspects of the PL properties and carrier dynamics of SrTiO3 and CH3NH3PbX3 (X=I, Br), which are representative oxide and halide perovskites.  相似文献   

11.
Mixed halide perovskites (MHPs) are a class of semiconductor materials with great promise for many optoelectronic applications due to their outstanding photophysical properties. Understanding and tailoring the photogenerated carrier dynamics is essential for further improvement of perovskite performance. Herein, we report a study about the carrier transport and interfacial charge transfer dynamics in Br-gradient MAPbI3-xBrx perovskite thin films prepared by surface ion-exchange method. Driven by the bandgap gradient in MAPbI3-xBrx films, the accelerated internal hole transport and enhanced interfacial extraction efficiency were both observed. Meanwhile, the interfacial electron transfer was also found to be evidently facilitated due to the surface modification during post-treatment. Our findings suggest the possibility of simultaneous acceleration of interfacial electron and hole transfer processes in halide perovskite films via surface post-treatment technique, which is of great importance in further improving the power conversion efficiency of perovskite solar cells.  相似文献   

12.
有机-无机杂化卤化铅钙钛矿因具有独特的电子和光学特性,已经成为光电领域最有前途的材料。但是,有机-无机钙钛矿材料及器件稳定性差,限制了其实际应用。与杂化钙钛矿相比,全无机卤化物钙钛矿CsPbX3(X=Cl,Br,I)显示出更强的热稳定性。全无机卤化物钙钛矿CsPbX3具有多个晶型,在不同的温度下呈不同相结构。目前,关于CsPbX3的结构和物理性质仍存在争议。本文我们针对三个晶相α-,β-和γ-CsPbX3的结构,热力学稳定性和电子性质进行了全面的理论研究。第一性原理计算表明,从高温α相到低温β相,然后再到γ相的相变伴随着PbX6八面体的畸变。零温形成能计算表明,γ相最稳定,这与实验中γ相为低温稳定相的结论一致。电子性质计算表明,所有CsPbX3钙钛矿都表现出直接带隙性质,并且带隙值从α相到β相再到γ相逐渐增加。这是由于相变发生时,Pb-X成键强度逐渐减弱,使价带顶能量降低,进而带隙增加。在所有相中,α相结构中较强的Pb-X相互作用,导致了较强的带边色散,使其具有较小的载流子有效质量。  相似文献   

13.
We have studied the photoconducting and photodielectric properties of heterostructures based on poly-N-epoxypropylcarbazole and poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene] doped with zinc 2,3,9,10,16,17,23,24-octabutylphthalocyanine located between SnO2 :In2O3 and Ag electrical contacts, in the absorption region of the metal complex. We have observed that the photosensitivity is higher when the poly-N-epoxypropylcarbazole films are deposited on a SnO2 :In2O3 electrode. The increased photosensitivity of the heterostructures compared with monolayers of the films is explained by the high efficiency of dissociation of the photogenerated electron–hole pairs and the decrease in the effect of traps for nonequilibrium charge carriers at the film interfaces.  相似文献   

14.
Hybrid halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) exhibit unusually low free‐carrier concentrations despite being processed at low‐temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self‐regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. This behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.  相似文献   

15.
The low-dimensional halide perovskites have attracted increasing attention due to their improved moisture stability, reduced defects, and suppressed ions migration in many optoelectronic devices such as solar cells, light-emitting diodes, X-ray detectors, and so on. However, they are still limited by their large band gap and short charge carriers’ diffusion length. Here, we demonstrate that the introduction of metal ions into organic interlayers of two-dimensional (2D) perovskite by cross-linking the copper paddle-wheel cluster-based lead bromide ([Cu(O2C−(CH2)3−NH3)2]PbBr4) perovskite single crystals with coordination bonds can not only significantly reduce the perovskite band gap to 0.96 eV to boost the X-ray induced charge carriers, but can also selectively improve the charge carriers’ transport along the out-of-plane direction and blocking the ions motion paths. The [Cu(O2C−(CH2)3−NH3)2]PbBr4 single-crystal device can reach a record charges/ions collection ratio of 1.69×1018±4.7 % μGyair−1 s, and exhibit a large sensitivity of 1.14×105±7% μC Gyair−1 cm−2 with the lowest detectable dose rate of 56 nGyair s−1 under 120 keV X-rays irradiation. In addition, [Cu(O2C−(CH2)3−NH3)2]PbBr4 single-crystal detector exposed to the air without any encapsulation shows excellent X-ray imaging capability with long-term operational stability without any attenuation of 120 days.  相似文献   

16.
Replacing the Pb−X octahedral building unit of AIPbX3 perovskites (X=halide) with a pair of edge-sharing Pb−X octahedra affords the expanded perovskite analogs: AIIPb2X6. We report seven members of this new family of materials. In 3D hybrid perovskites, orbitals from the organic molecules do not participate in the band edges. In contrast, the more spacious inorganic sublattice of the expanded analogs accommodates larger pyrazinium-based cations with low-lying π* orbitals that form the conduction band, substantially decreasing the band gap of the expanded lattice. The molecular nature of the conduction band allows us to electronically dope the materials by reducing the organic molecules. By synthesizing derivatives with AII=pyridinium and ammonium, we can isolate the contributions of the pyrazinium-based orbitals in the band gap transition of AIIPb2X6. The organic-molecule-based conduction band and the inorganic-ion-based valence band provide an unusual electronic platform with localized states for electrons and more disperse bands for holes upon optical or thermal excitation.  相似文献   

17.
Double perovskites (DPs) with a generic formula A2M′(I)MIIIX6 (A and M are metal ions, and X=Cl, Br, I) are now being explored as potential alternatives to Pb‐halide perovskites for solar cells and other optoelectronic applications. However, these DPs typically suffer from wide (≈3 eV) and/or indirect band gaps. In 2017, a new structural variety, namely layered halide DP Cs4CuSb2Cl12 (CCSC) with bivalent CuII ion in the place of M′(I) was reported, which exhibit a band gap of approximately 1 eV. Here, we report a mechanochemical synthesis of CCSC, its thermal and chemical stability, and magnetic response of CuII d9 electrons controlling the optoelectronic properties. A simple grinding of precursor salts at ambient conditions provides a stable and scalable product. CCSC is stable in water/acetone solvent mixtures (≈30 % water) and many other polar solvents unlike Pb‐halide perovskites. It decomposes to Cs3Sb2Cl9, Cs2CuCl4, and SbCl3 at 210 °C, but the reaction can be reversed back to produce CCSC at lower temperatures and high humidity. A long‐range magnetic ordering is observed in CCSC even at room temperature. The role of such magnetic ordering in controlling the dispersion of the conduction band, and therefore, controlling the electronic and optoelectronic properties of CCSC has been discussed.  相似文献   

18.
Although all‐inorganic metal halide perovskites (MHPs) have shown tremendous improvement, they are still inferior to the hybrid organic–inorganic MHPs in efficiency. Recently, a conceptually new β‐CsPbI3 perovskite reached 18.4 % efficiency combined with good thermodynamic stability at ambient conditions. We use ab initio non‐adiabatic molecular dynamics to show that native point defects in β‐CsPbI3 are generally benign for nonradiative charge recombination, regardless of whether they introduce shallow or deep trap states. These results indicate that MHPs do not follow the simple models used to explain defect‐mediated charge recombination in the conventional semiconductors. The strong tolerance is due to the softness of the perovskite lattice, which permits separation of electrons and holes upon defect formation, and only allows carriers to couple to the low‐frequency vibrations. Both factors decrease notably the non‐adiabatic coupling and slow down the dissipation of energy to heat.  相似文献   

19.
Although all-inorganic metal halide perovskites (MHPs) have shown tremendous improvement, they are still inferior to the hybrid organic–inorganic MHPs in efficiency. Recently, a conceptually new β-CsPbI3 perovskite reached 18.4 % efficiency combined with good thermodynamic stability at ambient conditions. We use ab initio non-adiabatic molecular dynamics to show that native point defects in β-CsPbI3 are generally benign for nonradiative charge recombination, regardless of whether they introduce shallow or deep trap states. These results indicate that MHPs do not follow the simple models used to explain defect-mediated charge recombination in the conventional semiconductors. The strong tolerance is due to the softness of the perovskite lattice, which permits separation of electrons and holes upon defect formation, and only allows carriers to couple to the low-frequency vibrations. Both factors decrease notably the non-adiabatic coupling and slow down the dissipation of energy to heat.  相似文献   

20.
Thermoelectric properties of bulk and bilayer two-dimensional (2D) MoS2/MoSe2 heterostructures are investigated using density functional theory in conjunction with semiclassical Boltzmann transport theory. It is predicted that the bulk 2D heterostructures could considerably enhance the thermoelectric properties as compared with the bulk MoSe2. The enhancement originates from the reduction in the band gap and the presence of interlayer van der Waals interactions. We therefore propose the 2D MoS2/MoSe2 heterostructures as a possible candidate material for thermoelectric applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号