首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have studied the photoluminescence (PL) of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors and the correlation of the PL of those phosphor with their crystal structure. It is found that (Y, Gd)VO4:Eu3+ phosphors have the same crystal structure as YVO4:Eu3+, which is tetragonal with a little different lattice parameters. In the case of (Y, La)VO4:Eu3+ phosphors, however, the gradual change from tetragonal to monoclinic structure of host lattice was observed as the amount of La ion increased. To investigate the PL property of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors, vacuum ultraviolet (VUV) and ultraviolet (UV) excitation were used. The favorable crystal structure for the PL intensity of orthovanadate phosphor under 147 and 254 nm excitation was tetragonal containing Gd ion and under 365 nm excitation was monoclinic containing La ion which might have the lowest site symmetry for Eu3+ ion.  相似文献   

2.
LnAl3(BO3)4:Eu3+ (Ln=Y, Gd) red phosphor particles were prepared by spray pyrolysis and the luminescent intensity under vacuum ultraviolet (VUV) excitation was investigated by changing Eu3+ content, Y/Gd molar ratio, and boron content. The concentration quenching for Eu3+ activator was observed at 5 at%. The highest luminescent intensity at 615 nm due to the 5D07F2 transitions of Eu3+ was achieved when the ratio of Gd to Y was 0.55. The R/O ratio (obtained by dividing the red emission intensity at 615 nm with the orange one at 592 nm), however, was not influenced by the G/Y ratio. Using excess boron, up to 135% of the stoichiometric quantity, improved the emission intensity of LnAl3(BO3)4:Eu3+ red phosphor. According to XRD analysis, the sample prepared using boron of a stoichiometric quantity had YBO3 phase as a minor phase. Such YBO3 phase progressively disappeared with an increase in the excess quantity of boron, which was responsible for the enhancement of emission intensity. In addition, the R/O ratio became larger and larger by increasing the excess content of boron due to a reduction in the symmetry of Y site. Consequently, both the emission intensity and the color coordinate of LnAl3(BO3)4:Eu3+ red phosphors were successfully optimized in terms of the Y/Gd ratio and the excess quantity of boron in spray pyrolysis.  相似文献   

3.
Intense red emitting phosphors MGd2(MoO4)4: Eu3+ (M=Ca, Sr and Ba) have been synthesized by the simple sol-gel technique. The formation processes and the phase impurity of phosphors are characterized by thermogravimetry-differential thermal analysis (TG-DTA) and power X-ray diffraction (XRD). The narrower size distribution and the regular shape of the phosphor particles are also measured by Field emission scanning electronic microscopy (FE-SEM). Photo-luminescent properties of the phosphors are performed at room temperature. Their excitation spectra present strong absorption at 395 nm near-UV light and 465 nm blue light, which match well with commercial LED chips. The phosphors exhibit satisfactory and excellent red light dominated by 616 nm and their photoluminescence intensity is about 3-4 times stronger than that of phosphor YAG under the 465 nm excitation. In addition, the optimal concentrations of Eu3+ for phosphors MGd2(MoO4)4 (M=Ca, Sr and Ba) have also been determined.  相似文献   

4.
KGd1−x(WO4)2−y(MoO4)y:Eu3+x(0.1?x?0.75, y=0 and 0.2) phosphors are synthesized through traditional solid-state reaction and their luminescent properties in ultraviolet (UV) and vacuum ultraviolet (VUV) regions are investigated. Under 147 nm excitation, these phosphors show characteristic red emission with good color purity. In order to improve their emission intensity, the MoO42− (20 wt%) is introduced into the anion of KGd1−x(WO4):Eu3+x. The Mo6+ and Eu3+ co-doped KGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped KGd(WO4)2 in VUV region. The chromaticity coordination of KGd0.45(WO4):Eu3+0.55 is (x=0.669, y=0.331), while that of KGd0.45(WO4)1.8(MoO4)0.2:Eu3+0.55 is (x=0.666, y=0.334) in VUV region.  相似文献   

5.
Eu3+-doped (La, Ln) PO4 (Ln = Gd and Y) phosphors were prepared by a facile co-precipitation method. Their structures and luminescent properties under UV excitation were investigated. Structural characterization of the nanostructured luminescence material was carried out with X-ray powder diffraction analysis. Scanning electron microscopy was carried out to understand the surface morphological features and grain sizes with 50–100 nm. It is found that (La, Gd) PO4:Eu3+ phosphors have the same crystal structure as LaPO4:Eu3+, which is monoclinic with a little different lattice parameters. In the case of (La, Y) PO4:Eu3+ phosphors, however, the gradual change from monoclinic to tetragonal structure of host lattice was observed, as the amount of Y ion increased. From the photoluminescence spectra for (La, Ln) PO4:Eu3+ (Ln = Gd and Y), the emission transition 5D0 → 7F1 has been found to be more prominent over the normal red emission transition 5D0 → 7F2. Furthermore, the size influence on the products was discussed. It was observed that the spectral features possess sharp and bright emission for potential applications on the monitors of the television and some other related electronic systems, in observing the images in orange–red color.  相似文献   

6.
A series of NaY1−yEuy(WO4)2−x(MoO4)x (x=0−2 and y=0.06−0.15) phosphors have been prepared by a combustion route. X-ray powder diffraction, photoluminescence excitation and emission spectra were used to characterize the resulting samples. The excitation spectra of these phosphors show the strongest absorption at about 396 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. Their emission spectra show an intense red emission at 616 nm due to the 5D07F2 electric dipole transition of Eu3+. As the Mo content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm increases and reaches a maximum when the relative ratio of Mo/W is 2:3. The intense red-emission of the tungstomolybdate phosphors at near-UV excitation suggests that the material is a potential candidate for white light emitting diode (WLEDs).  相似文献   

7.
Bi3+- and RE3+-co-doped (Y,Gd)BO3 phosphors were prepared and their luminescent properties under vacuum ultraviolet (VUV)/UV excitation were investigated. Strong red emission for (Y,Gd)BO3:Bi3+,Eu3+ and strong green emission for (Y,Gd)BO3:Bi3+,Tb3+ are observed under VUV excitation from 147 to 200 nm with a much broader excitation region than that of single Eu3+-doped or Tb3+-doped (Y,Gd)BO3 phosphor. Strong emissions are also observed under UV excitation around 265 nm where as nearly no luminescence is observed for single Eu3+-doped or Tb3+-doped (Y,Gd)BO3. The luminescence enhancement of Bi3+- and RE3+-co-doped (Y,Gd)BO3 phosphors is due to energy transfer from Bi3+ ion to Eu3+ or Tb3+ ion not only in the VUV region but also in the UV region. Besides, host sensitization competition between Bi3+ and Eu3+ or Tb3+ is also observed. The investigated phosphors may be preferable for devices with a VUV light 147-200 nm as an excitation source such as PDP or mercury-free fluorescent lamp.  相似文献   

8.
The effect of pressure on the phase transformations in Sm2(MoO4)3, Gd2(MoO4)3 and Eu2(MoO4)3 crystals has been studied in situ using synchrotron radiation. All three isostructural compounds undergo a structural phase transition at 2.2-2.8 GPa to a new phase, which is interpreted as a possible precursor of amorphization. Amorphization in these crystals occurs irreversibly over a wide pressure range, and its mechanism, interpreted as a chemical decomposition, is found to be weakly affected by the degree of hydrostaticity.  相似文献   

9.
Measurements of luminescence-excitation spectra and diffuse reflection spectra are performed with rare-earth orthophosphate phosphors, RPO4 (R = Y, La, Gd, and Lu) activated mainly with Eu3+ ions, in the vacuum ultraviolet region, 120–300 nm. A rather narrow excitation band at the absorption edge (145–160 nm) of the hosts is assigned to an intramolecular transition of PO3-4 anions.  相似文献   

10.
Rare-earth-doped polycrystalline Ca3(PO4)2:Eu, Ca3(PO4)2:Dy and Ca3(PO4)2:Eu,Dy phosphors prepared by a modified solid-state synthesis has been studied for its X-ray diffraction, thermoluminescence (TL) and photoluminescence (PL) characteristics. The PL emission spectra of the phosphor suggest the presence of Eu3+ ion in Ca3(PO4)2:Eu and Dy3+ ion in Ca3(PO4)2:Dy lattice sites. The TL glow curve of the Ca3(PO4)2:Eu compounds has a simple structure with a prominent peak at 228 °C, while Ca3(PO4)2:Dy peaking at 146 and 230 °C. TL sensitivity of phosphors are compared with CaSO4: Dy and found 1.52 and 1.20 times less in Ca3(PO4)2:Eu and Ca3(PO4)2:Dy phosphors, respectively. The Ca3(PO4)2:Eu,Dy phosphors shows switching behavior under two different excitation wavelengths and enhancement in PL intensity of Dy3+ ions were reported. The paper discusses the photoluminescence and thermoluminescence behavior of Eu3+ and Dy3+ ion in Ca3(PO4)2 hosts, it may be applicable to solid-state lighting as well as thermoluminescence dosimetry applications.  相似文献   

11.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

12.
Ca0.54Sr0.34−1.5xEu0.08Smx(MoO4)y (WO4)1−y red phosphors were prepared by solid-state reaction using Na+ as a charge compensator for light-emitting diodes (LED). The effects of Na+ concentration, synthesis temperature, reaction time and Eu3+ concentration were studied for the properties of luminescence and crystal structure of red phosphors. The results show that the optimum reaction condition is 6%, 900 °C, 2 h and 8%. The photoluminescence spectra show that red phosphors are effectively excited at 616 nm by 292, 395 and 465 nm. The wavelengths of 465 nm nicely match the widely applied emission wavelengths of blue LED chips.  相似文献   

13.
Eu3+-doped LiGd(MoO4)2 red phosphor was synthesized by solid-state reaction, and its photoluminescent properties were measured. The effect of Eu3+ doping concentration on PL intensity was investigated, and the optimum concentration of Eu3+ doped in LiGd(MoO4)2 was found to be 30 mol%. Compared with Y2O2S:0.05Eu3+, Na0.5Gd0.5MoO4:Eu3+ and KGd(MoO4)2:Eu3+, the LiGd(MoO4)2:Eu3+ phosphor showed a stronger excitation band around 395 nm and a higher intensity red emission of Eu3+ under 395 nm light excitation. For the first time, intensive red light-emitting diodes (LEDs) were fabricated by combining phosphor and a 395 nm InGaN chip, confirming that the LiGd(MoO4)2:Eu3+ phosphor is a good candidate for LED applications.  相似文献   

14.
In the context, Eu3+ (Dy3+)-doped YNbxTa1-xO4 and REVTa2O9 (RE=Y, La, Gd) phosphors have been synthesized from the hybrid precursors. Both XRD and SEM indicated the particles present good crystalline state, whose crystalline grain sizes were in the range of 0.5 to 1 μm. Besides, XRD patterns of YNbxTa1-xO4 (x=0.1, 0.2, 0.3, 0.5, 0.9) have shown that the phase has been changed from M-type YTaO4 to M-type YNbO4 with increasing niobium content. Furthermore, from the luminescent spectra of Eu3+-doped YNbxTa1-xO4, it was observed that the 5 D 07 F 2 transition of Eu3+ was predominated and its intensity increases with increasing niobium content, as well as the intensity ratio of 5 D 07 F 2 transition to 5 D 07 F 1 transition for Eu3+. The optimum concentrations of Eu3+ and Dy3+ in YNb0.5Ta0.5O4 have been found to be 6 and 5 mol %, respectively. At the same time, the luminescent properties of Eu3+ and Dy3+ in REVTa2O9 (RE=Y, La, Gd) have also been investigated that GdVTa2O9:Eu3+ (Dy3+) presents high luminescence, while LaVTa2O9:Eu3+ (Dy3+) shows weak luminescence. PACS 78.20.-e; 78.55.-m; 61.72.Ss; 32.50.+d; 81.40 Tv  相似文献   

15.
用微波辅助水热-煅烧法成功合成了花状NaY(MoO4)2颗粒,用XRD、XPS、FESEM进行了表征,提出了花状NaY(MoO4)2颗粒可能的形成机理. 采用相同的方法合成了NaY(MoO4)2:Eu3+荧光体,该荧光材料在612 nm处有一个强的发射峰,可用作白色发光二极管的红色磷光剂. 此外,微波辅助水热-煅烧法可能发展成为制备其他花状稀土钼酸盐的有效途径.  相似文献   

16.
Using urea as fuel and boric as flux, a novel bluish green emitting phosphor Li2(Ba0.99,Eu0.01)SiO4:B3+ has been successfully synthesized using a combustion method. The material has potential application as the fluorescent material for ultraviolet light-emitting diodes (UV-LEDs). The dependence of the properties of Li2(Ba0.99,Eu0.01)SiO4:B3+ phosphors upon urea concentration, boric acid doping and initiating combustion temperature were investigated. The crystallization and particle sizes of Li2(Ba0.99,Eu0.01)SiO4:B3+ have been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Luminescence measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a bluish green light with peak wavelength of 490 nm. The results showed that the boric acid was effective in improving the luminescence intensity of Li2(Ba0.99,Eu0.01)SiO4 and the optimum molar ratio of boric acid to barium nitrate was about 0.06. The optimized phosphors Li2(Ba0.99,Eu0.01)SiO4:B0.063+ showed 160% improved emission intensity compared with that of the Li2(Ba0.99,Eu0.01)SiO4 phosphors under UV (λex=350 nm) excitation.  相似文献   

17.
Nanosized luminescent (Y,Bi)VO4:Eu3+ and Y(V,P)O4:Eu3+ were synthesized at low temperatures either by a coprecipitation method or by a hydrothermal method from aqueous solutions. The effect of Bi3+ ion or P5+ ion content in the lattice, annealing temperature effects on the crystal structure and the particle size, and the luminescence property of (Y,Bi)VO4:Eu3+ and Y(V,P)O4:Eu3+ nanoparticles were examined with a field-enhanced scanning electron microscopy, XRD, and a spectrofluorometer. The pristine YVO4:Eu3+, (Y,Bi)VO4:Eu3+, or Y(V,P)O4:Eu3+ nanoparticles are 35-50 nm in size. The luminescence spectrum of the Eu3+ ion was used to probe its position in the crystal lattice. The dopant ions enter the same lattice sites in the nanocrystalline as in the corresponding bulk material, resulting similar spectral features between them. Photoluminescence intensity is weak for the pristine nanoparticles. Annealing the nanoparticles at temperatures up to 1000 °C results in the increased luminescence intensity (>80% of micrometer-sized phosphors) with the minimal particle growth and the improved particle crystallinity.  相似文献   

18.
A series of new red phosphors, MZr2(PO4)3:Eu3+; Bi3+ (M=Na; K), were synthesized using the solidstate reaction method, and their photoluminescence spectra were measured. The MZr2(PO4)3:Eu3+; Bi3+ (M=Na; K) phosphors were efficiently excited by an ultraviolet (UV; 395 nm) source, and showed intense orange-red emission at 595 nm. Further investigation of the concentration-dependent emission spectra indicated that the MZr2(PO4)3:Eu3+; Bi3+ (M=Na; K) phosphors exhibit the strongest luminescence intensity when y = 0.01 in NaZr2(0:95−y)(PO4)3:Eu0.103+, Bi2y 3+ and y = 0.09 in NaZr2(0.95−y)(PO4)3:Eu0.103+, Bi2y 3+, whereas the relative PL intensity decreases with increasing Bi3+ concentration due to concentration quenching. The addition of Bi3+ widens the excitation band of NaZr2(0.95−y)(PO4)3:Eu0.103+, Bi2y 3+ around 320 nm, which provides the useful idea of broadening the excitation band around 300–350 nm to fit the ultraviolet chip.  相似文献   

19.
SiO2@Gd2MoO6:Eu3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Gd2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrate that the Gd2MoO6:Eu3+ layers on the SiO2 spheres begin to crystallize after annealing at 600 °C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 600 nm), are not agglomerated, and have a smooth surface. The thickness of the Gd2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). The Eu3+ shows a strong PL luminescence (dominated by 5D0-7F2 red emission at 613 nm) under the excitation of 307 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.  相似文献   

20.
The fluorescence properties of Eu3 + and Tb3+ doped Na6La(BO3)3, Na6Gd(BO3)3, Na6Y(BO3)3, Na6(Gd, Y) (BO3)3 powder phosphors are reported. These phosphors display fluorescent RED and GREEN colours when droped with Eu3+ and Tb3+ ions, respectively. The best fluorescence performance was consistantly observed from the Na-Gd based hosts. The photoluminescence spectra were analysed by evaluating colour coordinates, relative intensity ratios, and stimulated emission cross-sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号