首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Modular optimization of metal–organic frameworks (MOFs) was realized by incorporation of coordinatively unsaturated single atoms in a MOF matrix. The newly developed MOF can selectively capture and photoreduce CO2 with high efficiency under visible‐light irradiation. Mechanistic investigation reveals that the presence of single Co atoms in the MOF can greatly boost the electron–hole separation efficiency in porphyrin units. Directional migration of photogenerated excitons from porphyrin to catalytic Co centers was witnessed, thereby achieving supply of long‐lived electrons for the reduction of CO2 molecules adsorbed on Co centers. As a direct result, porphyrin MOF comprising atomically dispersed catalytic centers exhibits significantly enhanced photocatalytic conversion of CO2, which is equivalent to a 3.13‐fold improvement in CO evolution rate (200.6 μmol g?1 h?1) and a 5.93‐fold enhancement in CH4 generation rate (36.67 μmol g?1 h?1) compared to the parent MOF.  相似文献   

2.
The separation of C2H2/CO2 is particularly challenging owing to their similarities in physical properties and molecular sizes. Reported here is a mixed metal–organic framework (M′MOF), [Fe(pyz)Ni(CN)4] ( FeNi‐M′MOF , pyz=pyrazine), with multiple functional sites and compact one‐dimensional channels of about 4.0 Å for C2H2/CO2 separation. This MOF shows not only a remarkable volumetric C2H2 uptake of 133 cm3 cm?3, but also an excellent C2H2/CO2 selectivity of 24 under ambient conditions, resulting in the second highest C2H2‐capture amount of 4.54 mol L?1, thus outperforming most previous benchmark materials. The separation performance of this material is driven by π–π stacking and multiple intermolecular interactions between C2H2 molecules and the binding sites of FeNi‐M′MOF . This material can be facilely synthesized at room temperature and is water stable, highlighting FeNi‐M′MOF as a promising material for C2H2/CO2 separation.  相似文献   

3.
A robust porous metal–organic framework (MOF), [Co3(ndc)(HCOO)33‐OH)(H2O)]n ( 1 ) (H2ndc=5‐(4‐pyridyl)‐isophthalic acid), was synthesized with pronounced porosity. MOF 1 contained two different types of nanotubular channels, which exhibited a new topology with the Schlafli symbol of {42.65.83}{42.6}. MOF 1 showed high‐efficiency for the selective sorption of small molecules, including the energy‐correlated gases of H2, CH4, and CO2, and environment‐correlated steams of alcohols, acetone, and pyridine. Gas‐sorption experiments indicated that MOF 1 exhibited not only a high CO2‐uptake (25.1 wt % at 273 K/1 bar) but also the impressive selective sorption of CO2 over N2 and CH4. High H2‐uptake (2.04 wt % at 77 K/1 bar) was also observed. Moreover, systematic studies on the sorption of steams of organic molecules displayed excellent capacity for the sorption of the homologous series of alcohols (C1–C5), acetone, pyridine, as well as water.  相似文献   

4.
Here, we report two novel water‐stable amine‐functionalized MOFs, namely IISERP‐MOF26 ([NH2(CH3)2][Cu2O(Ad)(BDC)]?(H2O)2(DMA), 1 ) and IISERP‐MOF27 ([NH2(CH3)2]1/2[Zn4O(Ad)3(BDC)2]?(H2O)2(DMF)1/2, 2 ), which show selective CO2 capture capabilities. They are made by combining inexpensive and readily available terephthalic acid and N‐rich adenine with Cu and Zn, respectively. They possess 1D channels decorated by the free amine group from the adenine and the polarizing oxygen atoms from the terephthalate units. Even more, there are dimethyl ammonium (DMA+) cations in the pore rendering an electrostatic environment within the channels. The activated Cu‐ and Zn‐MOFs physisorb about 2.7 and 2.2 mmol g?1 of CO2, respectively, with high CO2/N2 and moderate CO2/CH4 selectivity. The calculated heat of adsorption (HOA=21–23 kJ mol?1) for the CO2 in both MOFs suggest optimal physical interactions which corroborate well with their facile on‐off cycling of CO2. Notably, both MOFs retain their crystallinity and porosity even after soaking in water for 24 hours as well as upon exposure to steam over 24 hours. The exceptional thermal and chemical stability, favorable CO2 uptakes and selectivity and low HOA make these MOFs promising sorbents for selective CO2 capture applications. However, the MOF′s low heat of adsorption despite having a highly CO2‐loving groups lined walls is quite intriguing.  相似文献   

5.
A metal–organic framework (NPC‐6) with an NbO topology based on a piperazine ring‐bridged diisophthalate ligand was synthesized and characterized. The incorporated piperazine group leads to an enhanced adsorption affinity for CO2 in NPC‐6, in which the CO2 uptake is 4.83 mmol g?1 at 293 K and 1 bar, ranking among the top values of CO2 uptake on MOF materials. At 0.15 bar and 293 K, the NPC‐6 adsorbs 1.07 mmol g?1 of CO2, which is about 55.1 % higher than that of the analogue MOF NOTT‐101 under the same conditions. The enhanced CO2 uptake combined with comparable uptakes for CH4 and N2 leads to much higher selectivities for CO2/CH4 and CO2/N2 gas mixtures on NPC‐6 than on NOTT‐101. Furthermore, an N‐alkylation is used in the synthesis of the PDIA ligand, leading to a much lower cost compared with that in the synthesis of ligands in the NOTT series, as the former does not require a palladium‐based catalyst and borate esters. Thus, we conclude that NPC‐6 is a promising candidate for CO2 capture applications.  相似文献   

6.
Polycyclic aromatic derivatives can trap 1O2 to form endoperoxides (EPOs) for O2 storage and as sources of reactive oxygen species. However, these materials suffer from structural amorphism, which limit both practical applications and fundamental studies on their structural optimization for O2 capture and release. Metal–organic frameworks (MOFs) offer advantages in O2 binding, such as clear structure–performance relationships and precise controllability. Herein, we report the reversible binding of O2 is realized via the chemical transformation between anthracene‐based and the corresponding EPO‐based MOF. It is shown that anthracene‐based MOF, the framework featuring linkers with polycyclic aromatic structure, can rapidly trap 1O2 to form EPOs and can be restored upon UV irradiation or heating to release O2. Furthermore, we confirm that photosensitizer‐incorporated anthracene‐based MOF are promising candidates for reversible O2 carriers controlled by switching Vis/UV irradiation.  相似文献   

7.
The quantum mechanics (QM) method and grand canonical Monte Carlo (GCMC) simulations are used to study the effect of lithium cation doping on the adsorption and separation of CO2, CH4, and H2 on a twofold interwoven metal–organic framework (MOF), Zn2(NDC)2(diPyNI) (NDC=2,6‐naphthalenedicarboxylate; diPyNI=N,N′‐di‐(4‐pyridyl)‐1,4,5,8‐naphthalenetetracarboxydiimide). Second‐order Moller–Plesset (MP2) calculations on the (Li+–diPyNI) cluster model show that the energetically most favorable lithium binding site is above the pyridine ring side at a distance of 1.817 Å from the oxygen atom. The results reveal that the adsorption capacity of Zn2(NDC)2(diPyNI) for carbon dioxide is higher than those of hydrogen and methane at room temperature. Furthermore, GCMC simulations on the structures obtained from QM calculations predict that the Li+‐doped MOF has higher adsorption capacities than the nondoped MOF, especially at low pressures. In addition, the probability density distribution plots reveal that CO2, CH4, and H2 molecules accumulate close to the Li cation site. The selectivity results indicate that CO2/H2 selectivity values in Zn2(NDC)2(diPyNI) are higher than those of CO2/CH4. The selectivity of CO2 over CH4 on Li+‐doped Zn2(NDC)2(diPyNI) is improved relative to the nondoped MOF.  相似文献   

8.
Synchrotron radiation (SR) IR microspectroscopy has enabled determination of the thermodynamics, kinetics, and molecular orientation of CO2 adsorbed in single microcrystals of a functionalized metal–organic framework (MOF) under conditions relevant to carbon capture from flue gases. Single crystals of the small‐pore MOF, Sc2(BDC‐NH2)3, (BDC‐NH2=2‐amino‐1,4‐benzenedicarboxylate), with well‐defined crystal form have been investigated during CO2 uptake at partial pressures of 0.025‐0.2 bar at 298–373 K. The enthalpy and diffusivity of adsorption determined from individual single crystals are consistent with values obtained from measurements on bulk samples. The brilliant SR IR source permits rapid collection of polarized spectra. Strong variations in absorbance of the symmetric stretch of the NH2 groups of the MOF and the asymmetric stretch of the adsorbed CO2 at different orientations of the crystals relative to the polarized IR light show that CO2 molecules align along channels in the MOF.  相似文献   

9.
Metal–organic frameworks (MOFs) including the UiO‐66 series show potential application in the adsorption and conversion of CO2. Herein, we report the first tetravalent metal‐based metal–organic gels constructed from ZrIV and 2‐aminoterephthalic acid (H2BDC‐NH2). The ZrBDC‐NH2 gel materials are based on UiO‐66‐NH2 nanoparticles and were easily prepared under mild conditions (80 °C for 4.5 h). The ZrBDC‐NH2‐1:1‐0.2 gel material has a high surface area (up to 1040 m2 g?1) and showed outstanding performance in CO2 adsorption (by using the dried material) and conversion (by using the wet gel) arising from the combined advantages of the gel and the UiO‐66‐NH2 MOF. The ZrBDC‐NH2‐1:1‐0.2 dried material showed 38 % higher capture capacity for CO2 at 298 K than microcrystalline UiO‐66‐NH2. It showed high ideal adsorbed solution theory selectivity (71.6 at 298 K) for a CO2/N2 gas mixture (molar ratio 15:85). Furthermore, the ZrBDC‐NH2‐1:1‐0.2 gel showed activity as a heterogeneous catalyst in the chemical fixation of CO2 and an excellent catalytic performance was achieved for the cycloaddition of atmospheric pressure of CO2 to epoxides at 373 K. In addition, the gel catalyst could be reused over multiple cycles with no considerable loss of catalytic activity.  相似文献   

10.
A porous rtl metal–organic framework (MOF) [Mn5L(H2O)6?(DMA)2]?5DMA?4C2H5OH ( 1? Mn) (H10L=5,10,15,20‐tetra(4‐(3,5‐dicarboxylphenoxy)phenyl)porphyrin; DMA=N,N′‐dimethylacetamide) was synthesized by employing a new porphyrin‐based octacarboxylic acid ligand. 1? Mn exhibits high MnII density in the porous framework, providing it great Lewis‐acid heterogeneous catalytic capability for the cycloaddition of CO2 with epoxides. Strikingly, 1? Mn features excellent catalytic activity to the cycloaddition of CO2 to epoxides, with a remarkable initial turnover frequency 400 per mole of catalyst per hour at 20 atm. As‐synthesized 1? Mn also exhibits size selectivity to different epoxide substrates on account of their steric hindrance. The high catalytic activity, size selectivity, and stability toward the epoxides on catalytic cycloaddition of CO2 make 1? Mn a promising heterogeneous catalyst for fixation and utilization of CO2.  相似文献   

11.
Metal–organic framework (MOF) NH2‐Uio‐66(Zr) exhibits photocatalytic activity for CO2 reduction in the presence of triethanolamine as sacrificial agent under visible‐light irradiation. Photoinduced electron transfer from the excited 2‐aminoterephthalate (ATA) to Zr oxo clusters in NH2‐Uio‐66(Zr) was for the first time revealed by photoluminescence studies. Generation of ZrIII and its involvement in photocatalytic CO2 reduction was confirmed by ESR analysis. Moreover, NH2‐Uio‐66(Zr) with mixed ATA and 2,5‐diaminoterephthalate (DTA) ligands was prepared and shown to exhibit higher performance for photocatalytic CO2 reduction due to its enhanced light adsorption and increased adsorption of CO2. This study provides a better understanding of photocatalytic CO2 reduction over MOF‐based photocatalysts and also demonstrates the great potential of using MOFs as highly stable, molecularly tunable, and recyclable photocatalysts in CO2 reduction.  相似文献   

12.
The concentration of carbon dioxide (CO2) in the atmosphere is increasing at an alarming rate resulting in undesirable environmental issues. To mitigate this growing concentration of CO2, selective carbon capture and storage/sequestration (CCS) are being investigated intensively. However, CCS technology is considered as an expensive and energy‐intensive process. In this context, selective carbon capture and utilization (CCU) as a C1 feedstock to synthesize value‐added chemicals and fuels is a promising step towards lowering the concentration of the atmospheric CO2 and for the production of high‐value chemicals. Towards this direction, several strategies have been developed to convert CO2, a Greenhouse gas (GHG) into useful chemicals by forming C?N, C?O, C?C, and C?H bonds. Among the various CO2 functionalization processes known, the cycloaddition of CO2 to epoxides has gained considerable interest owing to its 100% atom‐economic nature producing cyclic carbonates or polycarbonates in high yield and selectivity. Among the various classes of catalysts studied for cycloaddition of CO2 to cyclic carbonates, porous metal‐organic frameworks (MOFs) have gained a special interest due to their modular nature facilitating the introduction of a high density of Lewis acidic (LA) and CO2‐philic Lewis basic (LB) functionalities. However, most of the MOF‐based catalysts reported for cycloaddition of CO2 to respective cyclic carbonates in high yields require additional co‐catalyst, say tetra‐n‐butylammonium bromide (TBAB). On the contrary, the co‐catalyst‐free conversion of CO2 using rationally designed MOFs composed of both LA and LB sites is relatively less studied. In this review, we provide a comprehensive account of the research progress in the design of MOF based catalysts for environment‐friendly, co‐catalyst‐free fixation of CO2 into cyclic carbonates.  相似文献   

13.
The strategy to functionalize water‐stable metal–organic frameworks (MOFs) in order to improve their CO2 uptake capacities for efficient CO2 separation remains limited and challenging. We herein present an effective approach to functionalize a prominent water‐stable MOF, UiO‐66(Zr), by a combination of optimization and metalated‐ligand exchange. In particular, by systematic optimization, we have successfully obtained UiO‐66(Zr) of the highest BET surface area reported so far (1730 m2 g?1). Moreover, it shows a hybrid Type I/IV N2 isotherm at 77 K and a mesopore size of 3.9 nm for the first time. The UiO‐66 MOF underwent a metalated‐ligand‐exchange (MLE) process to yield a series of new UiO‐66‐type MOFs, among which UiO‐66‐(COONa)2‐EX and UiO‐66‐(COOLi)4‐EX MOFs have both enhanced CO2 working capacity and IAST CO2/N2 selectivity. Our approach has thus suggested an alternative design to achieve water‐stable MOFs with high crystallinity and gas uptake for efficient CO2 separation.  相似文献   

14.
Metal–organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass‐transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet‐based membranes remain as great challenges. A modified soft‐physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub‐10 nm‐thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H2/CO2 separation performance, with a separation factor of up to 166 and H2 permeance of up to 8×10−7 mol m−2 s−1 Pa−1 at elevated testing temperatures owing to a well‐defined size‐exclusion effect. This nanosheet‐based membrane holds great promise as the next generation of ultrapermeable gas separation membrane.  相似文献   

15.
A series of porous twofold interpenetrated In‐CoIII(porphyrin) metal–organic frameworks (MOFs) were constructed by in situ metalation of porphyrin bridging ligands and used as efficient cooperative catalysts for the hydration of terminal alkynes. The twofold interpenetrating structure brings adjacent CoIII(porphyrins) in the two networks parallel to each other with a distance of about 8.8 Å, an ideal distance for the simultaneous activation of both substrates in alkyne hydration reactions. As a result, the In‐CoIII(porphyrin) MOFs exhibit much higher (up to 38 times) catalytic activity than either homogeneous catalysts or MOF controls with isolated CoIII(porphyrin) centers, thus highlighting the potential application of MOFs in cooperative catalysis.  相似文献   

16.
The water stable UiO‐66(Zr)‐(CO2H)2 MOF exhibits a superprotonic conductivity of 2.3×10?3 S cm?1 at 90 °C and 95 % relative humidity. Quasi‐elastic neutron scattering measurements combined with aMS‐EVB3 molecular dynamics simulations were able to probe individually the dynamics of both confined protons and water molecules and to further reveal that the proton transport is assisted by the formation of a hydrogen‐bonded water network that spans from the tetrahedral to the octahedral cages of this MOF. This is the first joint experimental/modeling study that unambiguously elucidates the proton‐conduction mechanism at the molecular level in a highly conductive MOF.  相似文献   

17.
An understanding of solid‐state crystal dynamics or flexibility in metal–organic frameworks (MOFs) showing multiple structural changes is highly demanding for the design of materials with potential applications in sensing and recognition. However, entangled MOFs showing such flexible behavior pose a great challenge in terms of extracting information on their dynamics because of their poor single‐crystallinity. In this article, detailed experimental studies on a twofold entangled MOF ( f‐MOF‐1) are reported, which unveil its structural response toward external stimuli such as temperature, pressure, and guest molecules. The crystallographic study shows multiple structural changes in f‐MOF‐1 , by which the 3 D net deforms and slides upon guest removal. Two distinct desolvated phases, that is, f‐MOF‐1 a and f‐MOF‐1 b , could be isolated; the former is a metastable one and transformable to the latter phase upon heating. The two phases show different gated CO2 adsorption profiles. DFT‐based calculations provide an insight into the selective and gated adsorption behavior with CO2 of f‐MOF‐1 b . The gate‐opening threshold pressure of CO2 adsorption can be tuned strategically by changing the chemical functionality of the linker from ethanylene (?CH2?CH2?) in f‐MOF‐1 to an azo (?N=N?) functionality in an analogous MOF, f‐MOF‐2 . The modulation of functionality has an indirect influence on the gate‐opening pressure owing to the difference in inter‐net interaction. The framework of f‐MOF‐1 is highly responsive toward CO2 gas molecules, and these results are supported by DFT calculations.  相似文献   

18.
The tunable chemistry linked to the organic/inorganic components in colloidal nanocrystals (NCs) and metal–organic frameworks (MOFs) offers a rich playground to advance the fundamental understanding of materials design for various applications. Herein, we combine these two classes of materials by synthesizing NC/MOF hybrids comprising Ag NCs that are in intimate contact with Al‐PMOF ([Al2(OH)2(TCPP)]) (tetrakis(4‐carboxyphenyl)porphyrin (TCPP)), to form Ag@Al‐PMOF. In our hybrids, the NCs are embedded in the MOF while still preserving electrical contact with a conductive substrate. This key feature allows the investigation of the Ag@Al‐PMOFs as electrocatalysts for the CO2 reduction reaction (CO2RR). We show that the pristine interface between the NCs and the MOFs accounts for electronic changes in the Ag, which suppress the hydrogen evolution reaction (HER) and promote the CO2RR. We also demonstrate a minor contribution of mass‐transfer effects imposed by the porous MOF layer under the chosen testing conditions. Furthermore, we find an increased morphological stability of the Ag NCs when combined with the Al‐PMOF. The synthesis method is general and applicable to other metal NCs, thus revealing a new way to think about rationally tailored electrocatalytic materials to steer selectivity and improve stability.  相似文献   

19.
Gas sensing technologies for smart cities require miniaturization, cost‐effectiveness, low power consumption, and outstanding sensitivity and selectivity. On‐chip, tailorable capacitive sensors integrated with metal–organic framework (MOF) films are presented, in which abundant coordinatively unsaturated metal sites are available for gas detection. The in situ growth of homogeneous Mg‐MOF‐74 films is realized with an appropriate metal‐to‐ligand ratio. The resultant sensors exhibit selective detection for benzene vapor and carbon dioxide (CO2) at room temperature. Postsynthetic modification of Mg‐MOF‐74 films with ethylenediamine decreases sensitivity toward benzene but increases selectivity to CO2. The reduced porosity and blocked open metal sites caused by amine coordination account for a deterioration in the sensing performance for benzene (by ca. 60 %). The enhanced sensitivity for CO2 (by ca. 25 %) stems from a tailored amine–CO2 interaction. This study demonstrates the feasibility of tuning gas sensing properties by adjusting MOF–analyte interactions, thereby offering new perspectives for the development of MOF‐based sensors.  相似文献   

20.
A promising alternative strategy for designing mesoporous metal–organic frameworks (MOFs) has been proposed, by modifying the symmetry rather than expanding the length of organic linkers. By means of this approach, a unique MOF material based on the target [Zn8(ad)4] (ad=adeninate) clusters and C3‐symmetric organic linkers can be obtained, with trigonal microporous (ca., 0.8 nm) and hexagonal mesoporous (ca., 3.0 nm) 1D channels. Moreover, the resulting 446‐MOF shows distinct reactivity to transition and lanthanide metal ions. Significantly, the transmetalation of CoII or NiII on the ZnII centers in 446‐MOF can enhance the sorption capacities of CO2 and CH4 (16–21 %), whereas the impregnation of EuIII and TbIII in the channels of 446‐MOF will result in adjustable light‐emitting behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号