首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Novel naphtho[1,2‐b:5,6‐b′]dithiophene (NDT) and diketopyrrolopyrrole (DPP)‐containing donor‐acceptor conjugated polymers (PNDTDPPs) with different branched side chains were synthesized via Pd(0)‐catalyzed Stille coupling reaction. Octyldodecyl (OD) and dodecylhexadecyl (DH) groups were tethered to the DPP units as the side chains. The soluble fraction of PNDTDPP‐OD polymer in chloroform has much lower molecular weight than that of PNDTDPP‐DH polymer. PNDTDPP‐DH polymer bearing relatively longer DH side chains exhibited much better charge‐transport behavior than PNDTDPP‐OD polymer with shorter OD side chains. The thermally annealed PNDTDPP‐DH polymer thin films exhibited an outstanding charge carrier mobility of ~1.32 cm2 V?1 s?1 (Ion/Ioff ~ 108) measured under ambient conditions, which is almost six times higher than that of thermally annealed PNDTDPP‐OD polymer thin films. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5280–5290  相似文献   

2.
Electron‐transporting organic semiconductors (n‐channel) for field‐effect transistors (FETs) that are processable in common organic solvents or exhibit air‐stable operation are rare. This investigation addresses both these challenges through rational molecular design and computational predictions of n‐channel FET air‐stability. A series of seven phenacyl–thiophene‐based materials are reported incorporating systematic variations in molecular structure and reduction potential. These compounds are as follows: 5,5′′′‐bis(perfluorophenylcarbonyl)‐2,2′:5′,‐ 2′′:5′′,2′′′‐quaterthiophene ( 1 ), 5,5′′′‐bis(phenacyl)‐2,2′:5′,2′′: 5′′,2′′′‐quaterthiophene ( 2 ), poly[5,5′′′‐(perfluorophenac‐2‐yl)‐4′,4′′‐dioctyl‐2,2′:5′,2′′:5′′,2′′′‐quaterthiophene) ( 3 ), 5,5′′′‐bis(perfluorophenacyl)‐4,4′′′‐dioctyl‐2,2′:5′,2′′:5′′,2′′′‐quaterthiophene ( 4 ), 2,7‐bis((5‐perfluorophenacyl)thiophen‐2‐yl)‐9,10‐phenanthrenequinone ( 5 ), 2,7‐bis[(5‐phenacyl)thiophen‐2‐yl]‐9,10‐phenanthrenequinone ( 6 ), and 2,7‐bis(thiophen‐2‐yl)‐9,10‐phenanthrenequinone, ( 7 ). Optical and electrochemical data reveal that phenacyl functionalization significantly depresses the LUMO energies, and introduction of the quinone fragment results in even greater LUMO stabilization. FET measurements reveal that the films of materials 1 , 3 , 5 , and 6 exhibit n‐channel activity. Notably, oligomer 1 exhibits one of the highest μe (up to ≈0.3 cm2 V?1 s?1) values reported to date for a solution‐cast organic semiconductor; one of the first n‐channel polymers, 3 , exhibits μe≈10?6 cm2 V?1 s?1 in spin‐cast films (μe=0.02 cm2 V?1 s?1 for drop‐cast 1 : 3 blend films); and rare air‐stable n‐channel material 5 exhibits n‐channel FET operation with μe=0.015 cm2 V?1 s?1, while maintaining a large Ion:off=106 for a period greater than one year in air. The crystal structures of 1 and 2 reveal close herringbone interplanar π‐stacking distances (3.50 and 3.43 Å, respectively), whereas the structure of the model quinone compound, 7 , exhibits 3.48 Å cofacial π‐stacking in a slipped, donor‐acceptor motif.  相似文献   

3.
Dimensionality plays an important role in the charge transport properties of organic semiconductors. Although three‐dimensional semiconductors, such as Si, are common in inorganic materials, imparting electrical conductivity to covalent three‐dimensional organic polymers is challenging. Now, the synthesis of a three‐dimensional π‐conjugated porous organic polymer (3D p‐POP) using catalyst‐free Diels–Alder cycloaddition polymerization followed by acid‐promoted aromatization is presented. With a surface area of 801 m2 g?1, full conjugation throughout the carbon backbone, and an electrical conductivity of 6(2)×10?4 S cm?1 upon treatment with I2 vapor, the 3D p‐POP is the first member of a new class of permanently porous 3D organic semiconductors.  相似文献   

4.
By the reaction of urea or thiourea, acetylacetone and hydrogen halide (HF, HBr or HI), we have obtained seven new 4,6‐dimethyl‐2‐pyrimido(thio)nium salts, which were characterized by single‐crystal X‐ray diffraction, namely, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium bifluoride, C6H9N2O+·HF2? or (dmpH)F2H, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium bromide, C6H9N2O+·Br? or (dmpH)Br, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium iodide, C6H9N2O+·I? or (dmpH)I, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium iodide–urea (1/1), C6H9N2O+·I?·CH4N2O or (dmpH)I·ur, 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium bifluoride–thiourea (1/1), C6H9N2S+·HF2?·CH4N2S or (dmptH)F2H·tu, 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium bromide, C6H9N2S+·Br? or (dmptH)Br, and 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium iodide, C6H9N2S+·I? or (dmptH)I. Three HCl derivatives were described previously in the literature, namely, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium chloride, (dmpH)Cl, 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium chloride monohydrate, (dmptH)Cl·H2O, and 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium chloride–thiourea (1/1), (dmptH)Cl·tu. Structural analysis shows that in 9 out of 10 of these compounds, the ions form one‐dimensional chains or ribbons stabilized by hydrogen bonds. Only in one compound are parallel planes present. In all the structures, there are charge‐assisted N+—H…X? hydrogen bonds, as well as weaker CAr+—H…X? and π+X? interactions. The structures can be divided into five types according to their hydrogen‐bond patterns. All the compounds undergo thermal decomposition at relatively high temperatures (150–300 °C) without melting. Four oxopyrimidinium salts containing a π+X?…π+ sandwich‐like structural motif exhibit luminescent properties.  相似文献   

5.
A triphosphaazatriangulene (H3L) was synthesized through an intramolecular triple phospha‐Friedel–Crafts reaction. The H3L triangulene contains three phosphinate groups and an extended π‐conjugated framework, which enables the stimuli‐responsive reversible transformation of [Cu(HL)(DMSO)?(MeOH)]n, a 3D‐MOF that exhibits reversible sorption characteristics, into (H3L?0.5 [Cu2(OH)4?6 H2O] ?4 H2O), a 1D‐columnar assembled proton‐conducting material. The hydrophilic nature of the latter resulted in a proton conductivity of 5.5×10?3 S cm?1 at 95 % relative humidity and 60 °C.  相似文献   

6.
The gas permeability and n‐butane solubility in glassy poly(1‐trimethylgermyl‐1‐propyne) (PTMGP) are reported. As synthesized, the PTMGP product contains two fractions: (1) one that is insoluble in toluene and soluble only in carbon disulfide (the toluene‐insoluble polymer) and (2) one that is soluble in both toluene and carbon disulfide (the toluene‐soluble polymer). In as‐cast films, the gas permeability and n‐butane solubility are higher in films prepared from the toluene‐soluble polymer (particularly in those films cast from toluene) than in films prepared from the toluene‐insoluble polymer and increase to a maximum in both fractions after methanol conditioning. For example, in as‐cast films prepared from carbon disulfide, the oxygen permeability at 35 °C is 330 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 73 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. After these films are conditioned in methanol, the oxygen permeability increases to 5200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 6200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. The rankings of the fractional free volume and nonequilibrium excess free volume in the various PTMGP films are consistent with the measured gas permeability and n‐butane solubility values. Methanol conditioning increases gas permeability and n‐butane solubility of as‐cast PTMGP films, regardless of the polymer fraction type and casting solvent used, and minimizes the permeability and solubility differences between the various films (i.e., the permeability and solubility values of all conditioned PTMGP films are similar). © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2228–2236, 2002  相似文献   

7.
Monodisperse metal clusters provide a unique platform for investigating magnetic exchange within molecular magnets. Herein, the core–shell structure of the monodisperse molecule magnet of [Gd52Ni56(IDA)48(OH)154(H2O)38]@SiO2 ( 1 a @SiO2) was prepared by encapsulating one high‐nuclearity lanthanide–transition‐metal compound of [Gd52Ni56(IDA)48(OH)154(H2O)38]?(NO3)18?164 H2O ( 1 ) (IDA=iminodiacetate) into one silica nanosphere through a facile one‐pot microemulsion method. 1 a @SiO2 was characterized using transmission electron microscopy, N2 adsorption–desorption isotherms, and inductively coupled plasma‐atomic emission spectrometry. Magnetic investigation of 1 and 1 a revealed J1=0.25 cm?1, J2=?0.060 cm?1, J3=?0.22 cm?1, J4=?8.63 cm?1, g=1.95, and z J=?2.0×10?3 cm?1 for 1 , and J1=0.26 cm?1, J2=?0.065 cm?1, J3=?0.23 cm?1, J4=?8.40 cm?1 g=1.99, and z J=0.000 cm?1 for 1 a @SiO2. The z J=0 in 1 a @SiO2 suggests that weak antiferromagnetic coupling between the compounds is shielded by silica nanospheres.  相似文献   

8.
New amorphous semiconducting copolymers, poly(9,9‐dialkylfluorene)‐alt‐(3‐dodecylthienyl‐divinylbenzene‐3‐dodecylthienyl) derivatives (PEFTVB and POFTVB), were designed, synthesized, and characterized. The structure of copolymers was confirmed by H NMR, IR, and elemental analysis. The copolymers showed very good solubility in organic solvents and high thermal stability with high Tg of 178–185 °C. The weight average molecular weight was found to be 107,900 with polydispersity of 3.14 for PEFTVB and 76,700 with that of 3.31 for POFTVB. UV–vis absorption studies showed the maximum absorption at 428 nm (in solution) and 435 nm (in film) for PEFTVB and at 430 nm (in solution) and 436 nm (in film) for POFTVB. Photoluminescence studies showed the emission at 498 nm (in solution) and 557 nm (in film) for PEFTVB and at 498 nm (in solution) and 536 nm (in film) for POFTVB. The solution‐processed thin‐film transistors showed the carrier mobility of 2 × 10?4 cm2 V?1 s?1 for PEFTVB‐based devices and 2 × 10?5 cm2 V?1 s?1 for POFTVB‐based devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3942–3949, 2010  相似文献   

9.
A novel series of naphthalene‐diimide‐based semiconducting polymers ( P1–P4 ) containing benzodithiophene or dithienopyrrole were successfully synthesized for ambipolar semiconducting materials showing near infrared absorptions. The incorporation of a 3‐hexylthiophene (3HT) spacer extended the intramolecular charge‐transfer (ICT) peak from λonset = 739 nm ( P1 ) to 785 nm ( P3 ). Moreover, about 250 nm red‐shift of the ICT peaks was observed in P2 and P4 compared to P1 and P3 due to the increased high‐lying HOMO energy levels. The grazing incidence X‐ray scattering of the P3 and P4 films proved the slightly improved crystalline order in the π?π stacking direction, indicating that the planar backbone is probably due to the introduced 3HT. The P1–P4 ‐based field‐effect transistor showed n‐type dominant ambipolar characteristics. The P2 and P4 showed higher electron mobilities up to 1.5 × 10?2 cm2 V?1 s?1 than P1 and P3 , which might be influenced by the orientation of the polymer backbone and the intermolecular orbital overlap. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 359–367  相似文献   

10.
The chemically covalent polyethylenimine–siloxane hybrids doped with various amounts of ortho‐phosphoric acid (H3PO4) were prepared and characterized by FTIR, DSC, TGA, and solid‐state NMR spectra. The protonic conduction behavior of these materials was also investigated by means of impedance measurements. These observations indicate that the hydrogen bonding and protonic interactions exist between the dopant H3PO4 and the hybrid host, resulting in an increase in T g of polyethylenimine segments. These hybrids are thermally stable up to 200 °C from TGA analysis. Conductivity studies show an Arrhenius behavior characteristic and the Grotthus‐like proton conduction, and a high conductivity of 10?2–10?3 S cm?1 at 110 °C in dry atmosphere for the hybrid membrane with H3PO4/EI of 0.5. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2135–2144, 2006  相似文献   

11.
The ionic conductivity properties of the face‐centered cubic [Ni8(OH)4(H2O)2(BDP_X)6] (H2BDP_X=1,4‐bis(pyrazol‐4‐yl)benzene‐4‐X with X=H ( 1 ), OH ( 2 ), NH2 ( 3 )) metal–organic framework (MOF) systems as well as their post‐synthetically modified materials K[Ni8(OH)5(EtO)(BDP_X)5.5] ( 1@KOH , 3@KOH ) and K3[Ni8(OH)3(EtO)(BDP_O)5] ( 2@KOH ), which contain missing‐linker defects, have been studied by variable temperature AC impedance spectroscopy. It should be noted that these modified materials exhibit up to four orders of magnitude increase in conductivity values in comparison to pristine 1 – 3 systems. As an example, the conductivity value of 5.86×10?9 S cm?1 (activation energy Ea of 0.60 eV) for 2 at 313 K and 22 % relative humidity (RH) increases up to 2.75×10?5 S cm?1 (Ea of 0.40 eV) for 2@KOH . Moreover, a further increase of conductivity values up to 1.16×10?2 S cm?1 and diminution of Ea down to 0.20 eV is achieved at 100 % RH for 2@KOH . The increased porosity, basicity and hydrophilicity of the 1@KOH – 3@KOH materials compared to the pristine 1 – 3 systems should explain the better performance of the KOH‐modified materials.  相似文献   

12.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

13.
The Cδ?H amination of unactivated, secondary C?H bonds to form a broad range of functionalized pyrrolidines has been developed by a triiodide (I3?)‐mediated strategy. By in situ 1) oxidation of sodium iodide and 2) sequestration of the transiently generated iodine (I2) as I3?, this approach precludes undesired I2‐mediated decomposition which can otherwise limit synthetic utility to only weak C(sp3)?H bonds. The mechanism of this triiodide‐mediated cyclization of unbiased, secondary C(sp3)?H bonds, by either thermal or photolytic initiation, is supported by NMR and UV/Vis data, as well as intercepted intermediates.  相似文献   

14.
The molecular structure of the hydrocarbon 5,6;11,12‐di‐o‐phenylenetetracene (DOPT), its material characterization and evaluation of electronic properties is reported for the first time. A single‐crystal X‐ray study reveals two different motifs of intramolecular overlap with herringbone‐type arrangement displaying either face‐to‐edge or co‐facial face‐to‐face packing depicting intensive π–π interactions. Density functional theory (DFT) calculations underpin that a favorable electronic transport mechanism occurs by a charge hopping process due to a π‐bond overlap in the DOPT polymorph with co‐facial arene orientation. The performance of polycrystalline DOPT films as active organic semiconducting layer in a state‐of‐the‐art organic field effect transistor (OFET) device was evaluated and proves to be film thickness dependent. For 40 nm layer thickness it displays a saturation hole mobility (μhole) of up to 0.01 cm2 V?1 s?1 and an on/off‐ratio (Ion/Ioff) of 1.5×103.  相似文献   

15.
We have succeeded in constructing a metal–organic framework (MOF), [Cu(bpdc)(H2O)2]n (H2bpdc=2,2′‐bipyridyl‐3,3′‐dicarboxylic acid, 1 ), and two poly‐POM–MOFs (POM=polyoxometalate), {H[Cu(Hbpdc)(H2O)2]2[PM12O40] ? n H2O}n (M=Mo for 2 , W for 3 ), by the controllable self‐assembly of H2bpdc, Keggin‐anions, and Cu2+ ions based on electrostatic and coordination interactions. Notably, these three compounds all crystallized in the monoclinic space group P21/n, and the Hbpdc? and bpdc2? ions have the same coordination mode. Interestingly, in compounds 2 and 3 , Hbpdc? and the Keggin‐anion are covalently linked to the transition metal copper at the same time as polydentate organic ligand and as polydentate inorganic ligand, respectively. Complexes 2 and 3 represent new and rare examples of introducing the metal N‐heterocyclic multi‐carboxylic acid frameworks into POMs, thereby, opening a pathway for the design and the synthesis of multifunctional hybrid materials based on two building units. The Keggin‐anions being immobilized as part of the metal N‐heterocyclic multi‐carboxylic acid frameworks not only enhance the thermal stability of compounds 2 and 3 , but also introduce functionality inside their structures, thereby, realizing four approaches in the 1D hydrophilic channel used to engender proton conductivity in MOFs for the first time. Complexes 2 and 3 exhibit good proton conductivity (10?4 to ca. 10?3 S cm?1) at 100 °C in the relative humidity range 35 to about 98 %.  相似文献   

16.
A long wavelength emission fluorescent (612 nm) chemosensor with high selectivity for H2PO4? ions was designed and synthesized according to the excited state intramolecular proton transfer (ESIPT). The sensor can exist in two tautomeric forms ('keto' and 'enol') in the presence of Fe3+ ion, Fe3+ may bind with the 'keto' form of the sensor. Furthermore, the in situ generated GY‐Fe3+ ensemble could recover the quenched fluorescence upon the addition of H2PO4? anion resulting in an off‐on‐type sensing with a detection limit of micromolar range in the same medium, and other anions, including F?, Cl?, Br?, I?, AcO?, HSO4?, ClO4? and CN? had nearly no influence on the probing behavior. The test strips based on 2‐[2‐hydroxy‐4‐(diethylamino) phenyl]‐1H‐imidazo[4,5‐b]phenazine and Fe3+ metal complex ( GY‐Fe3+ ) were fabricated, which could act as convenient and efficient H2PO4? test kits.  相似文献   

17.
Conjugated molecules with low lying LUMO levels are demanding for the development of air stable n‐type organic semiconductors. In this paper, we report a new A‐D‐A′‐D‐A conjugated molecule ( DAPDCV ) entailing diazapentalene (DAP) and dicyanovinylene groups as electron accepting units. Both theoretical and electrochemical studies manifest that the incorporation of DAP unit in the conjugated molecule can effectively lower the LUMO energy level. Accordingly, thin film of DAPDCV shows n‐type semiconducting behavior with electron mobility up to 0.16 cm2?V?1?s?1 after thermal annealing under N2 atmosphere. Moreover, thin film of DAPDCV also shows stable n‐type transporting property in air with mobility reaching 0.078 cm2?V?1?s?1.  相似文献   

18.
The kinetics of the gas‐phase reactions of O3 with a series of selected terpenes has been investigated under flow‐tube conditions at a pressure of 100 mbar synthetic air at 295 ± 0.5 K. In the presence of a large excess of m‐xylene as an OH radical scavenger, rate coefficients k(O3+terpene) were obtained with a relative rate technique, (unit: cm3 molecule?1 s?1, errors represent 2σ): α‐pinene: (1.1 ± 0.2) × 10?16, 3Δ‐carene: (5.9 ± 1.0) × 10?17, limonene: (2.5 ± 0.3) × 10?16, myrcene: (4.8 ± 0.6) × 10?16, trans‐ocimene: (5.5 ± 0.8) × 10?16, terpinolene: (1.6 ± 0.4) × 10?15 and α‐terpinene: (1.5 ± 0.4) × 10?14. Absolute rate coefficients for the reaction of O3 with the used reference substances (2‐methyl‐2‐butene and 2,3‐dimethyl‐2‐butene) were measured in a stopped‐flow system at a pressure of 500 mbar synthetic air at 295 ± 2 K using FT‐IR spectroscopy, (unit: cm3 molecule?1 s?1, errors represent 2σ ): 2‐methyl‐2‐butene: (4.1 ± 0.5) × 10?16 and 2,3‐dimethyl‐2‐butene: (1.0 ± 0.2) × 10?15. In addition, OH radical yields were found to be 0.47 ± 0.04 for 2‐methyl‐2‐butene and 0.77 ± 0.04 for 2,3‐dimethyl‐2‐butene. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 394–403, 2002  相似文献   

19.
We report the synthesis, characterization, redox behavior, and n‐channel organic field‐effect (OFET) characteristics of a new class of thieno[3,2‐b]thiophene‐diketopyrrolopyrrole‐based quinoidal small molecules 3 and 4 . Under ambient atmosphere, solution‐processed thin‐film transistors based on 3 and 4 exhibit maximum electron mobilities up to 0.22 and 0.16 cm2 V?1 s?1, respectively, with on‐off current ratios (Ion/Ioff) of more than than 106. Cyclic voltammetry analysis showed that this class of quinoidal derivatives exhibited excellent reversible two‐stage reduction behavior. This property was further investigated by a stepwise reductive titration of 4 , in which sequential reduction to the radical anion and then the dianion were observed.  相似文献   

20.
The well‐known photochromic tautomerism of 2‐(2,4‐dinitrobenzyl)pyridine ( 1 ; CH; Scheme 1) was re‐investigated by flash photolysis in aqueous solution in view of its potential application as a light‐activated proton pump. Irradiation of 1 yields the enamine tautomer NH (λmax=520 nm) that rapidly equilibrates with its conjugate base CNO? (λmax=420 nm). The pH–rate profile for the first‐order decay of NH and CNO? provides a direct determination of the acidity constant of NH, pK =5.94±0.12 (I=0.1M ) and serves to clarify the mechanisms of proton transfer prevailing in aqueous solutions. The acidity constant of protonated 1 (CHNH+), pK =4.18±0.02, was determined by spectrophotometric titration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号