首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bisai A  Singh VK 《Organic letters》2006,8(11):2405-2408
[reaction: see text] A copper(I) complex of i-Pr-pybox-diPh has been found to be an efficient catalyst for an enantioselective one-pot three-component synthesis of propargylamines from aldehydes, amines, and alkynes. The reaction has been applied to a wide variety of aromatic aldehydes with excellent yields (up to 99%) and enantiomeric excesses (up to 99% ee). A transition-state model has been proposed to explain the stereochemical outcome of the reaction.  相似文献   

2.
Bisindoles (BIMs) were modulated as powerful N,N′ donor ligands for the copper‐catalyzed Sonogashira reaction. Ligand screening experiments on 11 BIM compounds found that 3,3′‐(4‐chlorophenyl)methylenebis(1‐methyl‐1H‐indole) (10%) efficiently accelerated CuCl (5%)‐catalyzed cross‐coupling of aryl iodides with terminal alkynes. A wide range of substituted aryl iodides and/or alkyl‐ and aryl‐substituted terminal alkynes were examined, leading to the corresponding coupling products with yields up to 99%. An efficient and scalable protocol for the synthesis of BIM ligands on a gram scale, with extremely low catalyst loading of o‐ClC6H4NH3+Cl?, was also developed with a reaction time of 20 min with yields up to 93%. This novel N,N′ ligand was air‐stable, easily available and highly modulated with low copper loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
顺式烯烃是许多生物活性分子的基本结构单元, 在材料科学、 药物化学和农药等领域都有着广泛的应用. 我们以异丙醇为氢源, 研究了4,5-双二苯基膦-9,9-二甲基氧杂蒽配合三氟甲磺酸铜催化的炔烃选择性转移氢化反应, 实现了高选择性顺式烯烃(Z/E >99/1)的合成. 该反应体系不需要使用高压设备, 操作简便、 安全, 对氟、 氯和溴等卤素取代的炔烃表现出良好的底物兼容性. 最后, 进行了对比实验, 并提出了可能的反应机理.  相似文献   

4.
Herein we described an efficient RhII‐catalyzed enantioselective cyclopropenation reaction of internal alkynes with a masked difluorodiazoethane reagent (PhSO2CF2CHN2, Ps‐DFA). This asymmetric transformation offers efficient access to a broad range of enantioenriched difluoromethylated cyclopropenes (40 examples, up to 99 % yield, 97 % ee). The synthetic utility of obtained strained carbocycles is demonstrated by subsequent stereodefined processes, including cross‐couplings, hydrogenation, Diels–Alder reaction, and Pauson–Khand reaction.  相似文献   

5.
The enantioselective aldol reaction between ketones and aldehydes constitutes one the most common reaction models for the evaluation of novel organocatalysts. The last few years, it has been shown that the organocatalytic aldol reaction can be performed in water. A family of tripeptides consisting of proline, phenylalanine, and tert-butyl esters of amino acids was successfully employed in this asymmetric transformation. The products of the reaction between various ketones and aldehydes were obtained in high yields (up to 99%) with excellent diastereo- (up to 97:3 dr) and enantioselectivities (up to 99% ee). The C-terminal amino acid determines the ability of the tripeptide (Pro-Phe-AA-OtBu) to act efficiently in aqueous or organic medium.  相似文献   

6.
A number of novel chiral diamines 3 , (1R,2R)‐N‐monoalkylcyclohexane‐1,2‐diamines, were designed and synthesized from trans‐cyclohexane‐1,2‐diamine and applied to the catalytic asymmetric Henry reaction of benzaldehyde and nitromethane to provide β‐nitroalcohol in high yield (up to 99%) and good enantiomeric excess (up to 89%). By using ligand (1R,2R)‐N1‐(4‐methylpentan‐2‐yl)cyclohexane‐1,2‐diamine ( 3g ), the reaction was optimized in terms of the metal ion, temperature, solvent and base. Further experiments indicated that the complex, 3g –Cu(OAc)2, was an efficient catalyst in the asymmetric Henry reaction between different aldehydes and nitromethane, and the desired products have been obtained with high chemical yields (up to 99%) and high enantiomeric excess (up to 93%). The optimized catalyst promoted the diastereoselective Henry reaction of various aldehyde substrates and nitroalkane, which gave the corresponding anti‐selective adduct with up to 99% yield and 83:17 anti/syn selectivity. Upon scaling up to gram quantities, the β‐nitroalcohol was obtained in good yield (96%) with excellent selectivities (93% ee). The chiral induction mechanism was tentatively explained on the basis of a previously proposed transition‐state model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Even moderately nucleophilic dienes react with simple aldehydes in the presence of a new CrIII catalyst in a hetero-Diels–Alder reaction [Eq. (1)]. Tetrahydropyranyl products with up to three stereogenic centers are generated in near-perfect diastereoselectivities and with greater than 90 % ee (99 % ee for the example shown). TBAF=tetrabutylammonium fluoride; TBS=tert-butyldimethylsilyl; TES=triethylsilyl.  相似文献   

8.
Chiral allenes are readily accessed in a single pot operation in the reaction of terminal alkynes, aldehydes, chiral secondary amines, and zinc halides in good yields (up to 77% yield) and excellent enantioselectivities (up to 99% ee) in toluene at 120 °C. The reaction proceeds through initial formation of chiral propargylamine intermediates with creation of a new stereogenic center and subsequent chirality transfer via an intramolecular hydride shift to produce chiral allenes with high enantiomeric purities.  相似文献   

9.
Bo Gao 《Tetrahedron》2005,61(24):5822-5830
An efficient enantioselective approach to 2,5-disubstituted dihydropyrones was developed. Some easily accessible inexpensive diol ligand metal complexes were employed, and [(R)-BINOL]2-Ti(OiPr)4 complex was found to be the most effective catalyst (up to 99% yield and 99% ee in the presence of 5 mol% catalyst) for the hetero-Diels-Alder reaction between trans-1-methoxy-2-methyl-3-trimethylsiloxybuta-1,3-diene (1) and aldehydes. The potential and generality of this catalyst were evaluated by a variety of aldehydes including aromatic, heteroaromatic, α,β-unsaturated and aliphatic aldehydes. Based on the isolated intermediate from the reaction of benzaldehyde being confirmed by 1H, 13C NMR and HRMS data, the mechanism was proposed as a Mukaiyama aldol pathway.  相似文献   

10.
A new catalytic methodology was developed to promote an efficient one-pot kinetic resolution of racemic aldehydes with selectivity (s*) of up to 91 (99:1 d.r., >99 % ee) in a cycloaddition reaction with enolizable anhydrides to afford dihydroisocoumarin products (a core prevalent in natural products and molecules of medicinal interest) containing three contiguous stereocentres.  相似文献   

11.
An easily available and efficient chiral N,N′‐dioxide–nickel(II) complex catalyst has been developed for the direct catalytic asymmetric aldol reaction of α‐isothiocyanato imide with aldehydes which produces the products in morderate to high yields (up to 98 %) with excellent diastereo‐ (up to >99:1 d.r.) and enantioselectivities (up to >99 % ee). A variety of aromatic, heteroaromatic, α,β‐unsaturated, and aliphatic aldehydes were found to be suitable substrates in the presence of 2.5 mol % L ‐proline‐derived N,Ndioxide L5 –nickel(II) complex. This process was air‐tolerant and easily manipulated with available reagents. Based on experimental investigations, a possible transition state has been proposed to explain the origin of reactivity and asymmetric inductivity.  相似文献   

12.
Full investigation of cyanation of aldehydes, ketones, aldimines and ketimines with trimethylsilyl cyanide (TMSCN) or ethyl cyanoformate (CNCOOEt) as the cyanide source has been accomplished by employing an in situ generated catalyst from cinchona alkaloid, tetraisopropyl titanate [Ti(OiPr)4] and an achiral modified biphenol. With TMSCN as the cyanide source, good to excellent results have been achieved for the Strecker reaction of N‐Ts (Ts=p‐toluenesulfonyl) aldimines and ketimines (up to >99 % yield and >99 % ee) as well as for the cyanation of ketones (up to 99 % yield and 98 % ee). By using CNCOOEt as the alternative cyanide source, cyanation of aldehyde was accomplished and various enantioenriched cyanohydrin carbonates were prepared in up to 99 % yield and 96 % ee. Noteworthy, CNCOOEt was successfully employed for the first time in the asymmetric Strecker reaction of aldimines and ketimines, affording various α‐amino nitriles with excellent yields and ee values (up to >99 % yield and >99 % ee). The merits of current protocol involved facile availability of ligand components, operational simplicity and mild reaction conditions, which made it convenient to prepare synthetically important chiral cyanohydrins and α‐amino nitriles. Furthermore, control experiments and NMR analyses were performed to shed light on the catalyst structure. It is indicated that all the hydroxyl groups in cinchona alkaloid and biphenol complex with TiIV, forming the catalyst with the structure of (biphenoxide)Ti(OR*)(OiPr). The absolute configuration adopted by biphenol 4 m in the catalyst was identified as S configuration according to the evidence from control experiments and NMR analyses. Moreover, the roles of the protonic additive (iPrOH) and the tertiary amine in the cinchona alkaloid were studied in detail, and the real cyanide reagent in the catalytic cycle was found to be hydrogen cyanide (HCN). Finally, two plausible catalytic cycles were proposed to elucidate the reaction mechanisms.  相似文献   

13.
Yukun Zhang  Jun Zhu  Na Yu  Han Yu 《中国化学》2015,33(2):171-174
The 4,5‐methano‐L‐proline was used as chiral organocatalysts in direct asymmetric aldol reactions. Under the optimal conditions, excellent enantioselectivities (up to 99% ee) were obtained with high chemical yields (up to 95%) for a series of aldehydes using only 5 mol% catalyst loading. To show the practicality of the method, the reaction was tested at a large scale. The reaction was complete in 16 h, and the aldol product was obtained in 86% yield and 93% ee.  相似文献   

14.
The development of a highly active solid‐phase catechol–copper network catalyst for direct aldol reaction is described. The catalyst was prepared from an alkyl‐chain‐linked bis(catechol) and a copper(II) complex. The direct aldol reaction between carbonyl compounds (aldehydes and ketones) and methyl isocyanoacetate was carried out using 0.1–1 mol % [Cu] catalyst to give the corresponding oxazolines at yields of up to 99 % and a trans/cis ratio of >99:1. The catalyst was reused with no loss of catalytic activity. A plausible reaction pathway is also described.  相似文献   

15.
The first enantioselective Satoh–Miura‐type reaction is reported. A variety of C?N axially chiral N‐aryloxindoles have been enantioselectively synthesized by an asymmetric rhodium‐catalyzed dual C?H activation reaction of N‐aryloxindoles and alkynes. High yields and enantioselectivities were obtained (up to 99 % yield and up to 99 % ee). To date, it is also the first example of the asymmetric synthesis of C?N axially chiral compounds by such a C?H activation strategy.  相似文献   

16.
A copper-catalyzed dearomative alkynylation of pyridines is reported with excellent regio- and enantioselectivities. The synthetically valuable enantioenriched 2-alkynyl-1,2-dihydropyridine products afforded are generated from the readily available feedstock, pyridine, and commercially available terminal alkynes. The three-component reaction between a pyridine, a terminal alkyne, and methyl chloroformate employs copper chloride and StackPhos, a chiral biaryl P,N- ligand, as the catalytic system. Under mild reaction conditions, the desired 1,2-addition products are delivered in up to 99 % yield with regioselectivity ratios up to 25 : 1 and enantioselectivities values of up to 99 % ee. Activated and non-activated terminal alkynes containing a wide range of functional groups are well tolerated. Even acetylene gas delivered mono-alkynylated products in high yield and ee. Application of the methodology in an efficient enantioselective synthesis of the chiral piperidine indolizidine, coniceine, is reported.  相似文献   

17.
Enantiopure C2‐symmetric diol bidentate ligands have been synthesized in a straightforward manner through a three‐step reaction with good yields. The synthesized C2‐symmetric diol bidentate ligands were used in the addition of diethylzinc to various aromatic aldehydes, a general catalytic benchmark reaction, in order to assess their enantioselective induction properties. The enantioselective addition of diethylzinc to 1‐naphthaldehyde and 3‐chlorobenzaldehyde was achieved with an enantiomeric excess (ee) of up to 98%. All synthesized ligands were also evaluated in the addition of diethyzinc to aromatic aldehydes including an extra metal such as Ti(IV) (up to 99% ee). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Because of the lack of redox ability, zinc has seldom been used as a catalyst in dehydrogenative cross‐coupling reactions. Herein, a novel zinc‐catalyzed dehydrogenative C(sp2)? H/C(sp)? H cross‐coupling of terminal alkynes with aldehydes was developed, and provides a simple way to access ynones from readily available materials under mild reaction conditions. Good reaction selectivity can be achieved with a 1:1 ratio of terminal alkyne and aldehyde. Various terminal alkynes and aldehydes are suitable in this transformation.  相似文献   

19.
Propargylamines are synthesized in high yields via a gold(III) (C^N) complex-catalyzed three-component coupling reaction of aldehydes, amines and alkynes in water at 40 °C. Excellent diastereoselectivities (up to 99:1) have been achieved when chiral prolinol derivatives are employed as the amine component. Notably, the [Au(C^N)Cl2] complex (N^CH = 2-phenylpyridine) could be repeatedly used for 10 reaction cycles, leading to an overall turnover number of 812.  相似文献   

20.
Pinacol-type coupling reaction products presenting a high meso-diastereoselectivity (the ratio dl/meso was 4/96 up to 1/99) were obtained in fair to good yields (24–69%) using several aromatic aldehydes as starting materials and aluminium powder/copper sulfate as catalysts, in water, under reflux conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号