首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid and efficient Fmoc solid-phase synthesis of cyclic lipodepsipeptide analogue 1 to antibiotic fusaricidin A is described. Our synthetic approach includes resin attachment of the first amino acid via side chain, successful use of combination of four quasi-orthogonal removable protecting groups, stepwise solid-phase synthesis of linear peptide analogue, lipid tail attachment followed by depsipeptide bond formation and on-resin head-to-tail cyclization. Undesired ON acyl shift, which may occur during Fmoc removal, was successfully avoided by the incorporation of the lipid tail into the linear peptide precursor prior to on-resin depsipeptide bond formation and the ring closure.  相似文献   

2.
Pseudodesmin A is a cyclic lipodepsipeptide (CLP) of the viscosin group with a moderate in vitro biological activity. For several CLPs, including members of this group, this activity has been related to the ability to form ion pores in cellular membranes. As their size does not allow individual CLPs to span the membrane bilayer, individual monomers must somehow assemble into a larger structure. NMR spectroscopy has been used to demonstrate that in chloroform and other apolar organic solvents, pseudodesmin A monomers assemble into a supramolecular structure. These self‐assembled structures can become sufficiently large to span the membrane bilayer as demonstrated with translational diffusion NMR spectroscopic measurements. With the aim to obtain more insight into the structural nature of this assembly, the solution conformation of pseudodesmin A was first determined by using ROESY (rOe) restraints measured in acetonitrile, in which no self‐association occurs. The structure, which is found to be mostly similar to the previously described crystal structure, is shown to be retained within the supramolecular complex. Intermolecular rOe contacts obtained in chloroform together with chemical shift perturbation data provides structural insight into the organization of the self‐associated complex. Based upon this analysis, a model for the organization of pseudodesmin A monomers in the supramolecular assembly is proposed, which is in agreement with the formation of bilayer spanning hydrophilic pores and provides the basis for a structure–function relationship for this type of CLPs. Finally, it is demonstrated that the differences previously reported between the crystal and solution conformation of the white line inducing principle (WLIP), a close analogue of pseudodesmin A, are the result of the use of dimethyl sulfoxide as solvent, whose strong hydrogen‐bonding capacity induces conformational exchange.  相似文献   

3.
Two approaches for the solid‐phase total synthesis of apratoxin A and its derivatives were accomplished. In synthetic route A, the peptide was prepared by the sequential coupling of the corresponding amino acids on trityl chloride SynPhase Lanterns. After cleavage from the polymer‐support, macrolactamization of 10 , followed by thiazoline formation, provided apratoxin A. This approach, however, resulted in low yield because the chemoselectivity was not sufficient for the formation of the thiazoline ring though its analogue 33 was obtained. However, in synthetic route B, a cyclization precursor was prepared by solid‐phase peptide synthesis by using amino acids 13 – 15 and 18 . The final macrolactamization was performed in solution to provide apratoxin A in high overall yield. This method was then successfully applied to the synthesis of apratoxin analogues. The cytotoxic activity of the synthetic derivatives was then evaluated. The epimer 34 was as potent as apratoxin A, and O‐methyl tyrosine can be replaced by 7‐azidoheptyl tyrosine without loss of activity. The 1,3‐dipolar cycloaddition of 38 with phenylacetylene was performed in the presence of a copper catalyst without affecting the thiazoline ring.  相似文献   

4.
A concise, scalable, six‐step (longest linear sequence) synthetic route to ovatodiolide scaffolds was developed for the first time. This protecting‐group‐free route features tandem ring‐opening metathesis/ring‐closing metathesis reactions to install the macrocycle‐fused butenolide ring and a tandem allylboration/lactonization to build the α‐methylene‐γ‐lactone. Our syntheses have enabled the determination of the hitherto unknown stereochemical configurations of this family of natural products. Preliminary tests of structure–activity relationships were conducted with four natural ovatodiolides and three analogues. Further assays indicated that the synthetic natural product isoovatodiolide can significantly decrease the population of hepatic cancer stem cells and reduce the tumorsphere‐forming capability of HepG2 cells.  相似文献   

5.
A highly convergent total synthesis of the potent polyketide macrolide rhizopodin has been achieved in 29 steps by employing a concise strategy that exploits the molecule′s C2 symmetry. Notable features of this convergent approach include a rapid assembly of the macrocycle through a site‐directed sequential cross‐coupling strategy and the bidirectional attachment of the side chains by means of Horner–Wadsworth–Emmons (HWE) coupling reactions. During the course of this endeavor, scalable routes for synthesis of three main building blocks of similar complexity were developed that allowed for their stereocontrolled construction. This modular route will be amenable to the development of syntheses of other analogues of rhizopodin.  相似文献   

6.
Polymer–peptide conjugates (also known as biohybrids) are attracting considerable attention as injectable materials owing to the self‐assembling behavior of the peptide and the ability to control the material properties using the polymer component. To this end, a simple method for preparing poly(ethylene oxide)‐oligophenylalanine polymer–peptide conjugates (mPEOm‐Fn‐OEt) using isobutylchloroformate as the activating reagent has been identified and developed. The synthetic approach reported employs an industrially viable route to produce conjugates with high yield and purity. Moreover, the approach allows judicious selection of the precursor building blocks to produce libraries of polymer–peptide conjugates with complete control over the molecular composition. Control over the molecular make‐up of the conjugates allows fine control of the physicochemical properties, which will be exploited in future studies into the prominent self‐assembling behavior of such materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4853–4859  相似文献   

7.
Botulinum neurotoxin (BoNT) serotype A is the most lethal known toxin and has an occluded structure, which prevents direct inhibition of its active site before it enters the cytosol. Target‐guided synthesis by in situ click chemistry is combined with synthetic epitope targeting to exploit the tertiary structure of the BoNT protein as a landscape for assembling a competitive inhibitor. A substrate‐mimicking peptide macrocycle is used as a direct inhibitor of BoNT. An epitope‐targeting in situ click screen is utilized to identify a second peptide macrocycle ligand that binds to an epitope that, in the folded BoNT structure, is active‐site‐adjacent. A second in situ click screen identifies a molecular bridge between the two macrocycles. The resulting divalent inhibitor exhibits an in vitro inhibition constant of 165 pM against the BoNT/A catalytic chain. The inhibitor is carried into cells by the intact holotoxin, and demonstrates protection and rescue of BoNT intoxication in a human neuron model.  相似文献   

8.
A total synthesis of the cyclic lipodepsipeptide natural product orfamide A was achieved. By developing a synthesis format using an aminoacid ester building block and SPPS protocol adaptation, a focused library of target compounds was obtained, in high yield and purity. Spectral and LC-HRMS data of all library members with the isolated natural product identified the 5Leu residue to be d - and the 3’-OH group to be R-configured. The structural correction of orfamide A by chemical synthesis and analysis was confirmed by biological activity comparison in Chlamydomonas reinhardtii, which indicated compound configuration to be important for bioactivity. Acute toxicity was also found against Trypanosoma brucei, the parasite causing African sleeping sickness.  相似文献   

9.
Lysocin E, a macrocyclic peptide, exhibits potent antibacterial activity against methicillin‐resistant Staphylococcus aureus (MRSA) through a novel mechanism. The first total synthesis of lysocin E was achieved by applying a full solid‐phase strategy. The developed approach also provides rapid access to the enantiomeric, epimeric, and N‐demethylated analogues of lysocin E. Significantly, the antibacterial activity of the unnatural enantiomer was comparable to that of the natural isomer, suggesting the absence of chiral recognition in its mode of action.  相似文献   

10.
(?)‐Hybridalactone ( 1 ) is a marine eicosanoid isolated from the red alga Laurencia hybrida. This natural product contains cyclopropane, cyclopentane, 13‐membered macrolactone and epoxide ring systems incorporating seven stereogenic centers. Moreover, this compound has an acid‐labile skipped Z,Z‐diene motif. In this paper, we report on the total synthesis of (?)‐hybridalactone ( 1 ). The unique eicosanoid (?)‐hybridalactone ( 1 ) was synthesized starting from optically active γ‐butyrolactone 2 in a linear sequence comprising 21 steps with an overall yield of 21.9 %. A key step in the synthesis of (?)‐hybridalactone ( 1 ) is the methyl phenylsulfonylacetate‐mediated one‐pot synthesis of the cis‐cyclopropane‐γ‐lactone derivative. This reaction provided an efficient and stereoselective access to cis‐cyclopropane‐γ‐lactone 12 . Further elaboration of the latter compounds through desulfonylation, epoxidation, oxidation, Wittig olefination and Shiina macrolactonization afforded (?)‐hybridalactone.  相似文献   

11.
We report a general and operationally simple method for the solid phase synthesis of α‐ketoamide peptides using standard Fmoc solid phase peptide synthesis. The method delivers deprotected peptide α‐ketoamides directly upon resin cleavage without any additional steps, and tolerates all side chain functional groups. A small collection of C‐terminal and internal α‐ketoamide peptides – including two reported protease inhibitors (HCV and SUB1) – were prepared in good yields. In addition, we demonstrate that our method serves as versatile platform for the convenient preparation of cyclic α‐ketoamide peptides, photocagged peptide α‐ketoamides, and fluorescently labeled peptides.  相似文献   

12.
Cryptophycins are a family of highly cytotoxic, cyclic depsipeptides. They display antitumour activity that is largely maintained for multi‐drug‐resistant tumour cells. Cryptophycins are composed of four building blocks (units A–D) that correspond to the respective amino and hydroxy acids. A new synthetic route to unit A allows the selective generation of all four stereogenic centres in a short, efficient and reliable synthesis and contributes to an easier and faster synthesis of cryptophycins. The first two stereogenic centres are introduced by a catalytic asymmetric dihydroxylation, whereas the remaining two stereogenic centres are introduced with substrate control of diastereoselectivity. The stereogenic diol function also serves as the epoxide precursor. The approach was used to synthesise the native unit A building block as well as three para‐alkoxymethyl analogues from which cryptophycin‐52 and three analogous cryptophycins were prepared. Macrocyclisation of the seco‐depsipeptides was based on ring‐closing metathesis.  相似文献   

13.
Biology‐oriented synthesis employs the structural information encoded in complex natural products to guide the synthesis of compound collections enriched in bioactivity. The trans‐hydrindane dehydro‐δ‐lactone motif defines the characteristic scaffold of the steroid‐like withanolides, a plant‐derived natural product class with a diverse pattern of bioactivity. A withanolide‐inspired compound collection was synthesized by making use of three key intermediates that contain this characteristic framework derivatized with different reactive functional groups. Biological evaluation of the compound collection in cell‐based assays that monitored biological signal‐transduction processes revealed a novel class of Hedgehog signaling inhibitors that target the protein Smoothened.  相似文献   

14.
The peptide antibiotic albicidin, which is synthesized by the plant pathogenic bacterium Xanthomonas albilineans, displays remarkable antibacterial activity against various Gram‐positive and Gram‐negative microorganisms. The low amounts of albicidin obtainable from the producing organism or through heterologous expression are limiting factors in providing sufficient material for bioactivity profiling and structure–activity studies. Therefore, we developed a convergent total synthesis route toward albicidin. The unexpectedly difficult formation of amide bonds between the aromatic amino acids was achieved through a triphosgene‐mediated coupling strategy. The herein presented synthesis of albicidin confirms the previously determined chemical structure and underlines the extraordinary antibacterial activity of this compound. The synthetic protocol will provide multigram amounts of albicidin for further profiling of its drug properties.  相似文献   

15.
Macrocyclic natural products (NPs) and analogues thereof often show high affinity, selectivity, and metabolic stability, and methods for the synthesis of NP‐like macrocycle collections are of major current interest. We report an efficient solid‐phase/cyclorelease method for the synthesis of a collection of macrocyclic depsipeptides with bipartite peptide/polyketide structure inspired by the very potent F‐actin stabilizing depsipeptides of the jasplakinolide/geodiamolide class. The method includes the assembly of an acyclic precursor chain on a polymeric carrier, terminated by olefins that constitute complementary fragments of the polyketide section and cyclization by means of a relay‐ring‐closing metathesis (RRCM). The method was validated in the first total synthesis of the actin‐stabilizing cyclodepsipeptide seragamide A and the synthesis of a collection of structurally diverse bipartite depsipeptides.  相似文献   

16.
A concise, scalable, six‐step (longest linear sequence) synthetic route to ovatodiolide scaffolds was developed for the first time. This protecting‐group‐free route features tandem ring‐opening metathesis/ring‐closing metathesis reactions to install the macrocycle‐fused butenolide ring and a tandem allylboration/lactonization to build the α‐methylene‐γ‐lactone. Our syntheses have enabled the determination of the hitherto unknown stereochemical configurations of this family of natural products. Preliminary tests of structure–activity relationships were conducted with four natural ovatodiolides and three analogues. Further assays indicated that the synthetic natural product isoovatodiolide can significantly decrease the population of hepatic cancer stem cells and reduce the tumorsphere‐forming capability of HepG2 cells.  相似文献   

17.
A de novo solid-phase synthesis of the cyclic lipodepsipeptide daptomycin via Boc chemistry was achieved. The challenging ester bond formation between the nonproteinogenic amino acid kynurenine was achieved by esterification of a threonine residue with a protected tryptophan. Subsequent late-stage on-resin ozonolysis, inspired by the biomimetic pathway, afforded the kynurenine residue directly. Synthetic daptomycin possessed potent antimicrobial activity (MIC100=1.0 μg mL−1) against S. aureus, while five other daptomycin analogues containing (2R,3R)-3-methylglutamic acid, (2S,4S)-4-methylglutamic acid or canonical glutamic acid at position twelve prepared using this new methodology were all inactive, clearly establishing that the (2S,3R)-3-methylglutamic acid plays a key role in the antimicrobial activity of daptomycin.  相似文献   

18.
The macrocyclic antibiotic mangrolide A has been described to exhibit potent activity against a number of clinically important Gram‐negative pathogens. Reported is the first enantioselective total synthesis of mangrolide A and derivatives. Salient features of this synthesis include a highly convergent macrocycle preparation, stereoselective synthesis of the disaccharide moiety, and two β‐selective glycosylations. The synthesis of mangrolide A and its analogues enabled the re‐examination of its activity against bacterial pathogens, and only minimal activity was observed.  相似文献   

19.
An efficient cross‐linked polymer support for solid‐phase synthesis was prepared by introducing glycerol dimethacrylate cross‐linker to polystyrene network using free radical aqueous suspension polymerization. The support was characterized by various spectroscopic methods. Morphological feature of the resin was analyzed by microscopy. The polymerization reaction was investigated with respect to the effect of amount of cross‐linking agent, which in turn vary the swelling, loading, and the mechanical stability of the resin. The solvent uptake of the polymer was studied in relation to cross‐linking and compared with Merrifield resin. The stability of the resin was tested in different synthetic conditions used for solid‐phase peptide synthesis. Hydroxy group of the support was derivatized to chloro and then amino groups using different reagents and reaction conditions. Efficiency of the support was tested and compared with TentaGel? resin by following different steps involved in the synthesis of the 65–74 fragment of acyl carrier protein. The results showed that the poly(styrene‐co‐glycerol dimethacrylate) (GDMA‐PS) is equally efficient as TentaGel resin in peptide synthesis. The purity of the peptides was analyzed by HPLC and identities were determined by mass spectroscopy and amino acid analysis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4382–4392, 2005  相似文献   

20.
The solid‐phase synthesis (SPS) of a structurally complex glycopeptide, using Sieber amide resin, was monitored by high resolution magic angle spinning NMR, demonstrating the further application of this technique. A synthetic peptidoglycan derivative, a precursor of a biologically active PGN, known to be involved in the cellular recognition, was prepared by SPS. The synthesis involved the preparation of an N‐alloc glucosamine moiety and the synthesis of a simple amino acid sequence L ‐Ala‐D ‐Glu‐L ‐Lys‐D ‐Ala‐D ‐Ala. Last step consisted the coupling, on solid‐phase, of the protected muramyl unit to the peptide chain. Proton spectra with good suppression of the polystyrene signals in swollen resin samples were obtained in DMF‐d7 as a solvent and by using a nonselective 1D TOCSY/DIPSI‐2 scheme, thus allowing to follow the SPS without losses of compound and cleavage from the resin. The assignment of the proton spectra of the resin‐bound amino acid sequence and of the bound glycopeptide was achieved through the combination of MAS COSY, TOCSY and NOESY. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号