首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of assemblies of block copolymers composed of thermosensitive, biodegradable poly(N-(2-hydroxypropyl) methacrylamide-dilactate) and poly(ethylene glycol) (pHPMAmDL-b-PEG) has been studied by small-angle neutron scattering (SANS). Three amphiphilic copolymers with a fixed PEG of 5 kDa and a partially deuterated pHPMAmDL(d) block of 6700, 10400, or 21200 Da were used to form micelles in aqueous media by heating the polymeric solution from below to above the cloud point temperature (around 10 degrees C) of the thermosensitive block. Simultaneous and quantitative analysis of the scattering cross sections obtained at three different solvent contrasts is expedited using core-shell model, which assumed a homogeneous core of uniform scattering length density. The mean core radius increased from 13 to 18.5 nm with the molecular weight of the pHPMAmDL(d) block, while the thickness of the stabilizing PEG layer was around 8 nm for the three investigated assemblies. In addition, the volume fraction values of the stabilizing PEG chains in the shell are low and decreased from 31% to 14% with increasing the size of pHPMAmDL(d) block which shows that the shell layer of the assemblies is highly hydrated. The corresponding PEG chain grafting densities decreased from 0.22 to 0.11 nm-2 and the distance between PEG chains on the nanoparticles surface increased from 2.4 to 3.4 nm. The pHPMAmDL-b-PEG micelles showed a controlled instability due to hydrolysis of the lactic acid side groups in the thermosensitive block; that is, an increase of the degradation time leads to an increase of the size of the core which becomes less hydrophobic and consequently more hydrated. Neutron experiments supplied accurate information on how the size of the core and the micelle's aggregation number changed with the incubation time. This feature and the initially small size and dense structure in aqueous solution make the polymeric micelles suitable as carriers for hydrophobic drugs.  相似文献   

2.
以多孔硅球固定化猪胰脂肪酶(IPPL)为催化剂,温敏性HO-PNIPAM为大分子引发剂,5-甲基-5-烯丙氧羰基-三亚甲基碳酸酯(MAC)和5,5-二甲基三亚甲基碳酸酯(DTC)为共聚单体,通过开环聚合合成了不同结构比例的两亲性嵌段型共聚物P(MAC-co-DTC) -b-PNIPAM.该嵌段型共聚物在水中可自组装形成...  相似文献   

3.
With the goal of developing a pH-responsive micelle system, linear-dendritic block copolymers comprising poly(ethylene oxide) and either a polylysine or polyester dendron were prepared and hydrophobic groups were attached to the dendrimer periphery by highly acid-sensitive cyclic acetals. These copolymers were designed to form stable micelles in aqueous solution at neutral pH but to disintegrate into unimers at mildly acidic pH following loss of the hydrophobic groups upon acetal hydrolysis. Micelle formation was demonstrated by encapsulation of the fluorescent probe Nile Red, and the micelle sizes were determined by dynamic light scattering. The structure of the dendrimer block, its generation, and the synthetic method for linking the acetal groups to its periphery all had an influence on the critical micelle concentration and the micelle size. The rate of hydrolysis of the acetals at the micelle core was measured for each system at pH 7.4 and pH 5, and it was found that all systems were stable at neutral pH but underwent significant hydrolysis at pH 5 over several hours. The rate of hydrolysis at pH 5 was dependent on the structure of the copolymer, most notably the hydrophobicity of the core-forming block. To demonstrate the potential of these systems for controlled release, the release of Nile Red as a "model payload" was examined. At pH 7.4, the fluorescence of micelle-encapsulated Nile Red was relatively constant, indicating it was retained in the micelle, while at pH 5, the fluorescence decreased, consistent with its release into the aqueous environment. The rate of release was strongly correlated with the rate of acetal hydrolysis and was therefore controlled by the chemical structure of the copolymer. The mechanism of Nile Red release was investigated by monitoring the change in size of the micelles over time at acidic pH. Dynamic light scattering measurement showed a size decrease over time, eventually reaching the size of a unimer, thus providing evidence for the proposed micelle disintegration.  相似文献   

4.
The solubilization sites provided by micelles formed by a diblock copolymer with one neutral hydrophobic block, polystyrene, and one charged hydrophilic block, poly(acrylic acid) or poly(methacrylic acid), have been studied by fluorescence quenching of pyrene by polar and nonpolar quenchers. Pyrene solubilized into these micelles is distributed between the inner corona and the micelle core. The fraction of pyrene residing in the inner corona is almost unity for star micelles, where the corona-forming blocks are larger than the core-forming blocks, and around 0.5 for crew-cut micelles where the opposite situation prevails. The kinetics of the quenching process depends on the pyrene location, i.e. is static in the micelle core, and largely dynamic in the inner corona at low quencher concentration. The rate constants for fluorescence quenching by nitromethane are shown to increase with increasing pH.  相似文献   

5.
Interest in the use of poly(ethylene glycol)-b-polycaprolactone diblock copolymers in a targeted, magnetically triggered drug delivery system has led to this study of the phase behavior of the polycaprolactone core. Four different diblock copolymers were prepared by the ring-opening polymerization of caprolactone from the alcohol terminus of poly(ethylene glycol) monomethylether, M(n) ≈ 2000. The critical micelle concentration depended on the degree of polymerization for the polycaprolactone block and was in the range of 2.9 to 41 mg/L. Differential scanning calorimetry curves for polymer solutions with a concentration above the critical micelle concentration showed a melting endotherm in the range of 40 to 45 °C, indicating the polycaprolactone core was semicrystalline. Pyrene was entrapped in the micelle core without interfering with the ability of the polycaprolactone to crystallize. When the polymer solution was heated above the melting point of the micelle core, the pyrene was free to leave the core. Temperature-dependent measurements of the critical micelle concentration and temperature-dependent dynamic light scattering showed that the micelles remain intact at temperatures above the melting point of the polycaprolactone core.  相似文献   

6.
Aqueous reversible addition‐fragmentation chain transfer polymerization was used to synthesize poly(N‐[3‐(dimethylamino)propyl]acrylamide) (PDMAPA) cationic homopolymers and micelle‐forming, pH‐responsive, amphiphilic diblock copolymers of poly(sodium 2‐acrylamido‐2‐methyl‐1‐propanesulfonate‐blockN‐acryloyl‐L ‐alanine) (P(AMPS‐b‐AAL)). At low pH, the AAL blocks are protonated rendering them hydrophobic, whereas the AMPS blocks remain anionically charged because of the pendant sulfonate groups. Self‐assembly results in core–shell micelles consisting of hydrophobic cores of AAL and negatively charged shells of AMPS. Using solutions of these micelles with anionic coronas and of the cationic homopolymer PDMAPA, layer‐by‐layer (LbL) films were assembled at low pH, maintaining the micelle structures. Several block copolymers with varying AMPS and AAL block lengths were synthesized and used in the formation of LbL films. The thickness and morphology of the films were examined using ellipsometry and atomic force microscopy. The stimuli‐responsive behavior can be triggered by submersion of the film in water at neutral pH to disrupt the micelles. This behavior was monitored by observing the decrease in film thickness and alteration of the film morphology. The micelles were also loaded with a model hydrophobic compound, pyrene, and incorporated into LbL films. The release of pyrene from the films was monitored by fluorescence spectroscopy at varying pH values (1, 3, 5, and 7). As the pH of the solution increases, the rate of release increases. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Mixed micelle formation between two oppositely charged diblock copolymers that have a common thermosensitive nonionic block of poly(N‐isopropylacrylamide) (PNIPAAM) has been studied. The block copolymer mixed solutions were investigated under equimolar charge conditions as a function of both temperature and total polymer concentrations by turbidimetry, differential scanning calorimetry, two‐dimensional proton nuclear magnetic nuclear Overhauser effect spectroscopy (2D 1H NMR NOESY), dynamic light scattering, and small angle X‐ray scattering measurements. Well‐defined and electroneutral cylindrical micelles were formed with a radius and a length of about 3 nm and 35 nm, respectively. In the micelles, the charged blocks built up a core, which was surrounded by a corona of PNIPAAM chains. The 2D 1H NMR NOESY experiments showed that a minor block mixing occurred between the core blocks and the PNIPAAM blocks. By approaching the lower critical solution temperature of PNIPAAM, the PNIPAAM chains collapsed, which induced aggregation of the micelles. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1457–1469  相似文献   

8.
Amphilic triblock copolymers with varying ratios of hydrophilic poly[bis (methoxyethoxyethoxy)phosphazene] (MEEP) and relatively hydrophobic poly(propylene glycol) (PPG) blocks were synthesized via the controlled cationic‐induced living polymerization of a phosphoranimine (Cl3P?NSiMe3) at ambient temperature. A PPG block can function as either a classical hydrophobic block or a less hydrophobic component by varying the nature of a phosphazene block. The aqueous phase behavior of MEEP‐PPG‐MEEP block copolymers was investigated using fluorescence techniques, TEM, and dynamic light scattering (DLS). The critical micelle concentrations (cmcs) of MEEP‐PPG‐MEEP block copolymers were determined to be in the range of 3.7–16.8 mg/L. The mean diameters of MEEP‐PPG‐MEEP polymeric micelles, measured by DLS, were between 31 and 44 nm. The equilibrium constants of pyrene in these micelles ranged from 4.7 × 104 to 9.6 × 104. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 692–699, 2009  相似文献   

9.
Several series of amphiphilic diblock copolymers are investigated as macrosurfactants in comparison to reference low-molar-mass and polymeric surfactants. The various copolymers share poly(butyl acrylate) as a common hydrophobic block but are distinguished by six different hydrophilic blocks (one anionic, one cationic, and four nonionic hydrophilic blocks) with various compositions. Dynamic light scattering experiments indicate the presence of micelles over the whole concentration range from 10(-4) to 10 g x L(-1). Accordingly, the critical micellization concentrations are very low. Still, the surface tension of aqueous solutions of block copolymers decreases slowly but continuously with increasing concentration, without exhibiting a plateau. The longer the hydrophobic block, the shorter the hydrophilic block, and the less hydrophilic the monomer of the hydrophilic block is, the lower the surface tension is. However, the effects are small, and the copolymers reduce the surface tension much less than standard low-molar-mass surfactants. Also, the copolymers foam much less and even act as anti-foaming agents in classical foaming systems composed of standard surfactants. The copolymers stabilize O/W emulsions made of methyl palmitate as equally well as standard surfactants but are less efficient for O/W emulsions made of tributyrine. However, the copolymer micelles exhibit a high solubilization power for hydrophobic dyes, probably at their core-corona interface, in dependence on the initial geometry of the micelles and the composition of the block copolymers. Whereas micelles of copolymers with strongly hydrophilic blocks are stable upon solubilization, solubilization-induced micellar growth is observed for copolymers with moderately hydrophilic blocks.  相似文献   

10.
Double hydrophilic block copolymers poly(ethylene oxide)-b-polyglycidol were synthesized using living anionic polymerization. The polyglycidol blocks were made hydrophobic by the esterification of a part of hydroxyl groups with cinnamic acid, thus simultaneously attaching UV-sensitive double bonds to the polymer backbone. The block copolymers were found to spontaneously associate in aqueous solution forming well-defined micelles, where the corona of the micelles was formed of EO units and the cores consisted of hydrophobic glycidyl cinnanamate units. The critical micelle concentration was determined by light-scattering measurements and fluorescence spectroscopy. Stabilization of micelles was obtained by covalently crosslinking the cores of polyether micelles formed from amphiphilic block copolymers of the type poly(ethylene oxide)-b-poly(glycidol-co-glycidyl cinnamate) (denoted EO(113)-b-(Gl(33)-co-GlCA(33-x))). To obtain stable nanoparticles double bonds of cinnamate units contained in core were crosslinked under UV irradiation. The kinetics of the stabilization process was investigated using SEC-MALLS and UV spectroscopy. The parameters of the micelles and nanogels were calculated from the light-scattering data.  相似文献   

11.
Cationic amphiphilic diblock copolymers of poly(n-butylacrylate)-b-poly(3-(methacryloylamino)propyl)trimethylammonium chloride) (PBA-b-PMAPTAC) with various hydrophobic and hydrophilic chain lengths were synthesized by a reversible addition-fragmentation chain transfer (RAFT) process. Their molecular characteristics such as surface activity/nonactivity were investigated by surface tension measurements and foam formation observation. Their micelle formation behavior and micelle structure were investigated by fluorescence probe technique, static and dynamic light scattering (SLS and DLS), etc., as a function of hydrophilic and hydrophobic chain lengths. The block copolymers were found to be non-surface active because the surface tension of the aqueous solutions did not change with increasing polymer concentration. Critical micelle concentration (cmc) of the polymers could be determined by fluorescence and SLS measurements, which means that these polymers form micelles in bulk solution, although they were non-surface active. Above the cmc, the large blue shift of the emission maximum of N-phenyl-1-naphthylamine (NPN) probe and the low micropolarity value of the pyrene probe in polymer solution indicate the core of the micelle is nonpolar in nature. Also, the high value of the relative intensity of the NPN probe and the fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene (DPH) probe indicated that the core of the micelle is highly viscous in nature. DLS was used to measure the average hydrodynamic radii and size distribution of the copolymer micelles. The copolymer with the longest PBA block had the poorest water solubility and consequently formed micelles with larger size while having a lower cmc. The "non-surface activity" was confirmed for cationic amphiphilic diblock copolymers in addition to anionic ones studied previously, indicating the universality of non-surface activity nature.  相似文献   

12.
Poly(acrylic acid-b-styrene) (PAA-b-PS) amphiphilic block copolymers were synthesized by consecutive telomerization of tert-butyl acrylate, atom transfer radical polymerization (ATRP) of styrene, and hydrolysis. The resulting block copolymers were characterized by 1H NMR and GPC. These amphiphilic block copolymeric micelles were prepared by dialysis against water. Transmission electron micrograph (TEM) and laser particle sizer measurements were used to determine the morphology and size of these micelles. The results showed that these amphiphilic block copolymers formed spherical micelles with average size of 140–190?nm. The critical micelle concentration (CMC) and the kinetic stability of these micelles were investigated by fluorescence technique, using pyrene as a fluorescence probe. The observed CMC value was in the range of 0.075–0.351?mg/L. Kinetic stability studies showed that the stability of micelles increased with the decrease of the pH value of the solution.  相似文献   

13.
Microstructures self-assembled by amphiphilic ABC π-shaped block copolymers in dilute solution have been investigated by self-consistent field theory. The effects of architectural parameters and the interaction strength among the three blocks have been studied systematically. Our calculation results show that the distance of the two graft blocks has stronger effect than the length of graft blocks and the position of the first graft point on the phase behavior. The interaction strength among the three blocks is another important factor in controlling the resulting microstructures. Compound-core, multicompartment, and multicore micelles are observed in the case of π-shaped ABC block copolymers with hydrophilic backbone block A and hydrophobic graft blocks B and C. Core-shell-corona, incomplete skin-layered and hamburger micelles are formed when graft block C is hydrophilic and blocks A and B are hydrophobic. The wormlike multicore micelles have drawn our attention. We find that the morphology of wormlike multicore micelle can be controlled by changing the distance of the two graft blocks of the π-shaped block copolymers. In all of the wormlike multicore micelles, the streamline wormlike micelle is more stable than other wormlike micelles from the free energy analysis.  相似文献   

14.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

15.
This paper reports the studies on micelle formation of new biodegradable amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer with various PHB and PEO block lengths in aqueous solution. Transmission electron microscopy showed that the micelles took an approximately spherical shape with the surrounding diffuse outer shell formed by hydrophilic PEO blocks. The size distribution of the micelles formed by one triblock copolymer was demonstrated by dynamic light scattering technique. The critical micellization phenomena of the copolymers were extensively studied using the pyrene fluorescence dye absorption technique, and the (0,0) band changes of pyrene excitation spectra were used as a probe for the studies. For the copolymers studied in this report, the critical micelle concentrations ranged from 1.3 x 10(-5) to 1.1 x 10(-3) g/mL. For the same PEO block length of 5000, the critical micelle concentrations decreased with an increase in PHB block length, and the change was more significant in the short PHB range. It was found that the micelle formation of the biodegradable amphiphilic triblock copolymers consisting of poly(beta-hydroxyalkanoic acid) and PEO was relatively temperature-insensitive, which is quite different from their counterparts consisting of poly(alpha-hydroxyalkanoic acid) and PEO.  相似文献   

16.
Thermosensitive polymer micelles are generally obtained with block copolymers in which one block exhibits a lower critical solution temperature in aqueous solution. We investigate a different design that is based on the use of one block bearing a thermally labile side group, whose hydrolysis upon heating shifts the hydrophilic-hydrophobic balance toward the destabilization of block copolymer micelles. Atom transfer radical polymerization was utilized to synthesize a series of diblock copolymers composed of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(2-tetrahydropyranyl methacrylate) (PTHPMA). We show that micelles of PEO-b-PTHPMA in aqueous solution can be destabilized as a result of the thermosensitive hydrolytic cleavage of tetrahydropyranyl (THP) groups that transforms PTHPMA into hydrophilic poly(methacrylic acid). The three related processes occurring in aqueous solution, namely, hydrolytic cleavage of THP, destabilization of micelles, and release of loaded Nile Red (NR), were investigated simultaneously using 1H NMR, dynamic light scattering, and fluorescence spectroscopy, respectively. At 80 degrees C, the results suggest that the three events proceed with a similar kinetics. Although slower than at elevated temperatures, the disruption of PEO-b-PTHPMA micelles can take place at the body temperature (approximately 37 degrees C), and the release kinetics of NR can be adjusted by changing the relative lengths of the two blocks or the pH of the solution.  相似文献   

17.
Several series of symmetrical triblock copolymers were synthesized by the reversible addition fragmentation chain transfer method. They consist of a long block of poly(N-isopropylacrylamide) as hydrophilic, thermoresponsive middle block, which is end-capped by two small strongly hydrophobic blocks made from five different vinyl polymers. The association of the amphiphilic polymers was studied in dilute and concentrated aqueous solution. The polymer micelles found at low concentrations form hydrogels at high concentrations, typically above 30–35 wt.%. Hydrogel formation and the thermosensitive rheological behavior were studied exemplarily for copolymers with hydrophobic blocks of polystyrene, poly(2-ethylhexyl acrylate), and poly(n-octadecyl acrylate). All systems exhibited a cloud point around 30 °C. Heating beyond the cloud point initially favors hydrogel formation but continued heating results in macroscopic phase separation. The rheological behavior suggests that the copolymers associate into flower-like micelles, with only a small share of polymers that bridge the micelles and act as physical cross-linkers, even at high concentrations.  相似文献   

18.
疏水链段对两亲性三嵌段共聚物在水中聚集行为的影响   总被引:2,自引:1,他引:1  
以结构明确的两端为短的聚苯乙烯(PS)或聚甲基丙烯酸甲酯(PMMA)链段,中间为长的聚乙二醇(PEG)链段的PS-b-PEG-b-PS和PMMA-b-PEG-b-PMMA两亲性三嵌段共聚物为对象,研究了PS和PMMA链段对其在水中形成胶束和凝胶的影响.两种三嵌段共聚物在水中形成以PS或PMMA链段为核、PEG链段为壳的球形胶束,流体力学半径Rh,app为15.3~24.3 nm,并随PEG链段长度增长而增大.临界胶束浓度CMC均小于0.01 mg/mL,随着PS和PMMA链段长度的增加而减小.PS-b-PEG-b-PS浓度高于4.5 wt%可形成较强的疏水缔合的物理凝胶,平衡模量Ge可达到103Pa;PMMA-b-PEG-b-PMMA浓度高于7.5 wt%可以形成弱的凝胶,Ge<10 Pa.凝胶的储存模量G′和损耗模量G″均随着PS或PMMA链段的增长而增大.  相似文献   

19.
Fluorine-containing amphiphilic block copolymers, poly(sodium methacrylate)-block-poly(nonafluorohexyl methacrylate) (NaMAm-b-NFHMAn) (m:n = 61:12, 72:33, 64:57), and the corresponding non-fluorine-containing amphiphilic block copolymer, poly(sodium methacrylate)-block-poly(hexyl methacrylate) (NaMAm-b-HMAn) (m:n = 64:10, 69:37, 67:50), were synthesized. Both polyNaMA-b-polyNFHMA and polyNaMA-b-polyHMA formed micelles above critical micelle concentrations, (cmc's), around 3 x 10(-5) to 1 x 10(-4) mol/L, while neither polymer decreased surface tension of aqueous solutions. The size and shape of the micelles were examined by dynamic light scattering, small-angle neutron scattering, and small-angle X-ray scattering. PolyNaMA-b-polyHMA appeared to form only spherical micelles, while polyNaMA-b-polyNFHMA with a long NFHMA segment formed both spherical and rodlike micelles. The micelles of fluorine-containing block copolymers were obviously larger than those of non-fluorine-containing block copolymers with the same chain length and the same hydrophilic/hydrophobic chain ratio. The fluorine-containing block copolymer selectively solubilized fluorinated dye into the water phase when a mixture of decafluorobiphenyl and 2,6-dimethylnaphthalene was added to the micelle solution.  相似文献   

20.
The effect of the hydrophobic properties of blocks B and C on the aggregate morphologies formed by ABC linear triblock copolymers in selective solvent was studied through the self‐consistent field theory. Five typical micelles, such as core‐shell‐corona, hamburger‐like, segmented‐wormlike, were obtained by changing the hydrophobic properties of blocks B and C. The simulation results indicate that the shape and size of micelle are basically controlled by the hydrophobic degree of the middle block B, whereas the type of micelle is mainly determined by the hydrophobic degree of the end block C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 484–492, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号