首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In this paper we consider random block matrices which generalize the classical Laguerre ensemble and the Jacobi ensemble. We show that the random eigenvalues of the matrices can be uniformly approximated by the zeros of matrix orthogonal polynomials and obtain a rate for the maximum difference between the eigenvalues and the zeros. This relation between the random block matrices and matrix orthogonal polynomials allows a derivation of the asymptotic spectral distribution of the matrices.  相似文献   

2.
In this article, we study some algebraic and geometrical properties of polynomial numerical hulls of matrix polynomials and joint polynomial numerical hulls of a finite family of matrices (possibly the coefficients of a matrix polynomial). Also, we study polynomial numerical hulls of basic A-factor block circulant matrices. These are block companion matrices of particular simple monic matrix polynomials. By studying the polynomial numerical hulls of the Kronecker product of two matrices, we characterize the polynomial numerical hulls of unitary basic A-factor block circulant matrices.  相似文献   

3.
Matrix orthogonal Laurent polynomials in the unit circle and the theory of Toda-like integrable systems are connected using the Gauss–Borel factorization of two, left and a right, Cantero–Morales–Velázquez block moment matrices, which are constructed using a quasi-definite matrix measure. A block Gauss–Borel factorization problem of these moment matrices leads to two sets of biorthogonal matrix orthogonal Laurent polynomials and matrix Szeg? polynomials, which can be expressed in terms of Schur complements of bordered truncations of the block moment matrix. The corresponding block extension of the Christoffel–Darboux theory is derived. Deformations of the quasi-definite matrix measure leading to integrable systems of Toda type are studied. The integrable theory is given in this matrix scenario; wave and adjoint wave functions, Lax and Zakharov–Shabat equations, bilinear equations and discrete flows — connected with Darboux transformations. We generalize the integrable flows of the Cafasso's matrix extension of the Toeplitz lattice for the Verblunsky coefficients of Szeg? polynomials. An analysis of the Miwa shifts allows for the finding of interesting connections between Christoffel–Darboux kernels and Miwa shifts of the matrix orthogonal Laurent polynomials.  相似文献   

4.
本文定义了分块平方和可分解多项式的概念.粗略地说,它是这样一类多项式,只考虑其支撑集(不考虑系数)就可以把它的平方和分解问题等价地转换为较小规模的同类问题(换句话说,相应的半正定规划问题的矩阵可以分块对角化).本文证明了近年文献中提出的两类方法—分离多项式(split polynomial)和最小坐标投影(minimal coordinate projection)—都可以用分块平方和可分解多项式来描述,证明了分块平方和可分解多项式集在平方和多项式集中为零测集.  相似文献   

5.
It has been shown by Delosme and Morf that an arbitrary block matrix can be embedded into a block Toeplitz matrix; the dimension of this embedding depends on the complexity of the matrix structure compared to the block Toeplitz structure. Due to the special form of the embedding matrix, the algebra of matrix polynomials relative to block Toeplitz matrices can be interpreted directly in terms of the original matrix and therefore can be extended to arbitrary matrices. In fact, these polynomials turn out to provide an appropriate framework for the recently proposed generalized Levinson algorithm solving the general matrix inversion problem.  相似文献   

6.
We consider lower-triangular matrices consisting of symmetric polynomials, and we show how to factorize and invert them. Since binomial coefficients and Stirling numbers can be represented in terms of symmetric polynomials, these results contain factorizations and inverses of Pascal and Stirling matrices as special cases. This work generalizes that of several other authors on Pascal and Stirling matrices.  相似文献   

7.
We study two slightly different versions of the truncated matricial Hamburger moment problem. A central topic is the construction and investigation of distinguished solutions of both moment problems under consideration. These solutions turn out to be nonnegative Hermitian q × q Borel measures on the real axis which are concentrated on a finite number of points. These points and the corresponding masses will be explicitly described in terms of the given data. Furthermore, we investigate a particular class of sequences (sj)j = 0 of complex q × q matrices for which the corresponding infinite matricial Hamburger moment problem has a unique solution. Our approach is mainly algebraic. It is based on the use of particular matrix polynomials constructed from a nonnegative Hermitian block Hankel matrix. These matrix polynomials are immediate generalizations of the monic orthogonal matrix polynomials associated with a positive Hermitian block Hankel matrix. We generalize a classical theorem due to Kronecker on infinite Hankel matrices of finite rank to block Hankel matrices and discuss its consequences for the nonnegative Hermitian case.  相似文献   

8.
In this paper we consider random block matrices, which generalize the general beta ensembles recently investigated by Dumitriu and Edelmann (J. Math. Phys. 43:5830–5847, 2002; Ann. Inst. Poincaré Probab. Stat. 41:1083–1099, 2005). We demonstrate that the eigenvalues of these random matrices can be uniformly approximated by roots of matrix orthogonal polynomials which were investigated independently from the random matrix literature. As a consequence, we derive the asymptotic spectral distribution of these matrices. The limit distribution has a density which can be represented as the trace of an integral of densities of matrix measures corresponding to the Chebyshev matrix polynomials of the first kind. Our results establish a new relation between the theory of random block matrices and the field of matrix orthogonal polynomials, which have not been explored so far in the literature.  相似文献   

9.
There are two kinds of polynomial functions on matrix algebras over commutative rings: those induced by polynomials with coefficients in the algebra itself and those induced by polynomials with scalar coefficients. In the case of algebras of upper triangular matrices over a commutative ring, we characterize the former in terms of the latter (which are easier to handle because of substitution homomorphism). We conclude that the set of integer-valued polynomials with matrix coefficients on an algebra of upper triangular matrices is a ring, and that the set of null-polynomials with matrix coefficients on an algebra of upper triangular matrices is an ideal.  相似文献   

10.
In this paper explicit formulas are given for least common multiples and greatest common divisors of a finite number of matrix polynomials in terms of the coefficients of the given polynomials. An important role is played by block matrix generalizations of the classical Vandermonde and resultant matrices. Special attention is given to the evaluation of the degrees and other characteristics. Applications to matrix polynomial equations and factorization problems are made.  相似文献   

11.
12.
We study the stability of zero-fill incomplete LU factorizations of a nine-point coefficient matrix arising from a high-order compact discretisation of a two-dimensional constant-coefficient convection–diffusion problem. Nonlinear recurrences for computing entries of the lower and upper triangular matrices are derived and we show that the sequence of diagonal entries of the lower triangular factor is unconditionally convergent. A theoretical estimate of the limiting value is derived and we show that this estimate is a good predictor of the computed value. The unconditional convergence of the diagonal sequence of the lower triangular factor to a positive limit implies that the incomplete factorization process never encounters a zero pivot and that the other diagonal sequences are also convergent. The characteristic polynomials associated with the lower and upper triangular solves that occur during the preconditioning step are studied and conditions for the stability of the triangular solves are derived in terms of the entries of the tridiagonal matrices appearing in the lower and upper subdiagonals of the block triangular system matrix and a triplet of parameters which completely determines the solution of the nonlinear recursions. Results of ILU-preconditioned GMRES iterations and the effects of orderings on their convergence are also described.  相似文献   

13.
Computations with univariate polynomials, like the evaluation of product, quotient, remainder, greatest common divisor, etc, are closely related to linear algebra computations performed with structured matrices having the Toeplitz-like or the Hankel-like structures.

The discrete Fourier transform, and the FFT algorithms for its computation, constitute a powerful tool for the design and analysis of fast algorithms for solving problems involving polynomials and structured matrices.

We recall the main correlations between polynomial and matrix computations and present two recent results in this field: in particular, we show how Fourier methods can speed up the solution of a wide class of problems arising in queueing theory where certain Markov chains, defined by infinite block Toeplitz matrices in generalized Hessenberg form, must be solved. Moreover, we present a new method for the numerical factorization of polynomials based on a matrix generalization of Koenig's theorem. This method, that relies on the evaluation/interpolation technique at the Fourier points, reduces the problem of polynomial factorization to the computation of the LU decomposition of a banded Toeplitz matrix with its rows and columns suitably permuted. Numerical experiments that show the effectiveness of our algorithms are presented  相似文献   

14.
15.
The comrade matrix was introduced recently as the analogue of the companion matrix when a polynomial is expressed in terms of a basis set of orthogonal polynomials. It is now shown how previous results on determining the greatest common divisor of two or more polynomials can be extended to the case of generalized polynomials using the comrade form. Furthermore, a block comrade matrix is defined, and this is used to extend to the generalized case another previous result on the regular greatest common divisor of two polynomial matrices.  相似文献   

16.
In this paper, we study the characteristic polynomials of graphs which admit semifree actions of an abelian group. Using the method of group matrices, we are able to show that the characteristic polynomial of a such a graph is factorized into a product of a polynomial associated to the orbit of the action and a polynomial associated to the free part of the action.  相似文献   

17.
In this paper, we state and prove a new formula expressing explicitly the integratives of Bernstein polynomials (or B‐polynomials) of any degree and for any fractional‐order in terms of B‐polynomials themselves. We derive the transformation matrices that map the Bernstein and Legendre forms of a degree‐n polynomial on [0,1] into each other. By using their transformation matrices, we derive the operational matrices of integration and product of the Bernstein polynomials. These matrices together with the Tau method are then utilized to reduce the solution of this problem to the solution of a system of algebraic equations. The method is applied to solve linear and nonlinear fractional differential equations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Recent work in the characterization of structured matrices in terms of characteristic polynomials of principal submatrices is furthered in this paper. Some classical classes of matrices with quasiseparable structure include tridiagonal (related to real orthogonal polynomials) and banded matrices, unitary Hessenberg matrices (related to Szegö polynomials), and semiseparable matrices, as well as others. Hence working with the class of quasiseparable matrices provides new results which generalize and unify classical results.Previous work has focused on characterizing (H,1)-quasiseparable matrices, matrices with order-one quasiseparable structure that are also upper Hessenberg. In this paper, the authors introduce the concept of a twist transformation, and use such transformations to explain the relationship between (H,1)-quasiseparable matrices and the subclass of (1,1)-quasiseparable matrices (without the upper Hessenberg restriction) which are related to the same systems of polynomials. These results generalize the discoveries of Cantero, Fiedler, Kimura, Moral and Velázquez of five-diagonal matrices related to Horner and Szegö polynomials in the context of quasiseparable matrices.  相似文献   

19.
There is a well-established instability index theory for linear and quadratic matrix polynomials for which the coefficient matrices are Hermitian and skew-Hermitian. This theory relates the number of negative directions for the matrix coefficients which are Hermitian to the total number of unstable eigenvalues for the polynomial. Herein we extend the theory to ?-even matrix polynomials of any finite degree. In particular, unlike previously known cases we show that the instability index depends upon the size of the matrices when the degree of the polynomial is greater than two. We also consider Hermitian matrix polynomials, and derive an index which counts the number of eigenvalues with nonpositive imaginary part. The results are refined if we consider the Hermitian matrix polynomial to be a perturbation of a ?-even polynomials; however, this refinement requires additional assumptions on the matrix coefficients.  相似文献   

20.
Recent work in the characterization of structured matrices in terms of characteristic polynomials of principal submatrices is furthered in this paper. Some classical classes of matrices with quasiseparable structure include tridiagonal (related to real orthogonal polynomials) and banded matrices, unitary Hessenberg matrices (related to Szegö polynomials), and semiseparable matrices, as well as others. Hence working with the class of quasiseparable matrices provides new results which generalize and unify classical results.Previous work has focused on characterizing (H,1)-quasiseparable matrices, matrices with order-one quasiseparable structure that are also upper Hessenberg. In this paper, the authors introduce the concept of a twist transformation, and use such transformations to explain the relationship between (H,1)-quasiseparable matrices and the subclass of (1,1)-quasiseparable matrices (without the upper Hessenberg restriction) which are related to the same systems of polynomials. These results generalize the discoveries of Cantero, Fiedler, Kimura, Moral and Velázquez of five-diagonal matrices related to Horner and Szegö polynomials in the context of quasiseparable matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号