首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 777 毫秒
1.
A simple and rapid dispersive liquid–liquid microextraction method coupled with gas chromatography and mass spectrometry was applied for the determination of glyoxal as quinoxaline, methylglyoxal as 2‐methylquinoxaline, and diacetyl as 2,3‐dimethylquinoxaline in red ginseng products. The performance of the proposed method was evaluated under optimum extraction conditions (extraction solvent: chloroform 100 μL, disperser solvent: methanol 200 μL, derivatizing agent concentration: 5 g/L, reaction time: 1 h, and no addition of salt). The limit of detection and limit of quantitation were 1.30 and 4.33 μg/L for glyoxal, 1.86 and 6.20 μg/L for methylglyoxal, and 1.45 and 4.82 μg/L for diacetyl. The intra‐ and interday relative standard deviations were <4.95 and 5.80%, respectively. The relative recoveries were 92.4–103.9% in red ginseng concentrate and 99.4–110.7% in juice samples. Red ginseng concentrates were found to contain 191–4274 μg/kg of glyoxal, 1336–4798 μg/kg of methylglyoxal, and 0–830 μg/kg of diacetyl, whereas for red ginseng juices, the respective concentrations were 72–865, 69–3613, and 6–344 μg/L.  相似文献   

2.
2‐Methylimidazole, 4‐methylimidazole and 5‐hydroxymethylfurfural are harmful by‐products potentially formed via Maillard reaction in fermented soy sauce. The present study proposed a new method based on “quick, easy, cheap, effective, rugged, and safe” purification and ultra high performance liquid chromatography with tandem mass spectrometry for the simultaneous analysis of 2‐methylimidazole, 4‐methylimidazole and 5‐hydroxymethylfurfural in fermented soy sauce. The sample was dissolved in water after addition of internal standard 4‐methylimidazole‐d6 and extracted with acetonitrile. After dehydration, it was centrifuged and the supernatant was subsequently purified using two sorbents namely primary‐secondary amine and multi‐walled carbon nanotube. Three target analytes were separated by gradient elution and determined under multiple reactions monitoring mode. The limit of detection, matrix effect, recovery and precision of the developed method were investigated. Results found that three target analytes displayed excellent linearity in concentration range of 1–250 μg/L. Limit of detection was in the range of 0.3–1 μg/kg for three target analytes. The mean recoveries for fermented soy sauce samples at three spiked concentrations were in the range of 91.2–112.5%, and the intra‐ and interday precision were in the ranges of 3.6–9.2 and 7.1–10.8%, respectively. This validated method was successfully applied to determine 2‐methylimidazole, 4‐methylimidazole and 5‐hydroxymethylfurfural concentrations in fermented soy sauce.  相似文献   

3.
《Electrophoresis》2018,39(14):1763-1770
A pretreatment method of dispersive solid‐phase extraction (DSPE) along with back‐extraction followed by CE‐UV detector was developed for the determination of mercury species in water samples. Sulfhydryl‐functionalized SiO2 microspheres (SiO2−SH) were synthesized and used as DSPE adsorbents for selective extraction and enrichment of three organic mercury species namely ethylmercury (EtHg), methylmercury (MeHg), and phenylmercury (PhHg), along with L‐cysteine (L‐cys) containing hydrochloric acid as back‐extraction solvent. Several main extraction parameters were systematically investigated including sample pH, amount of adsorbent, extraction and back‐extraction time, volume of eluent, and concentration of hydrochloric acid. Under optimal conditions, good linearity was achieved with correlation coefficients over 0.9990, in the range of 4−200 μg/L for EtHg, and 2−200 μg/L for MeHg and PhHg. The LODs were obtained of 1.07, 0.34, and 0.24 μg/L for EtHg, MeHg, and PhHg, respectively, as well as the LOQs were 3.57, 1.13, and 0.79 μg/L, respectively, with enrichment factors ranging from 109 to 184. Recoveries were attained with tap and lake water samples in a range of 62.3−107.2%, with relative standard deviations of 3.5–10.1%. The results proved that the method of SiO2−SH based DSPE coupled with CE‐UV was a simple, rapid, cost‐effective, and eco‐friendly alternative for the determination of mercury species in water samples.  相似文献   

4.
A novel, simple, and reliable method based on high‐performance liquid chromatography coupled with fluorescence detection has been developed for the determination of nosiheptide in feed. The feed samples were extracted with acetonitrile 0.1% formic acid aqueous solution and then purified via a dispersive solid‐phase extraction procedure using silica gel powder as the sorbent. Using a mixture of acetonitrile and 5 mM ammonium acetate solution (containing 0.1% formic acid) as the mobile phase, good separation and peak shape were obtained for nosiheptide on a Poroshell C8 column (250 × 4.6 mm id, 4 μm) via the isocratic elution program. The resulting calibration curve shows high levels of linearity (r> 0.999) for nosiheptide concentrations of 50–1000 μg/L. At three spiked levels, i.e., 0.500, 2.50 and 5.00 mg/kg, the intra‐ and interday recoveries of nosiheptide in five types of feed ranged from 78.5–96.8 and 84.9–94.2%, respectively. The intra‐ and interday relative standard deviations were less than 10.8%. The limits of quantification for nosiheptide in complete feed and premixes were measured as 50 and 100 μg/kg, respectively. Compared with other common adsorbents, silica gel presents stronger recovery and purification results for feed samples during the dispersive solid‐phase extraction process.  相似文献   

5.
Vortex‐assisted dispersive liquid–liquid microextraction using methyl benzoate as an alternative extraction solvent for extracting and preconcentrating three benzimidazole fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in environmental water samples before high‐performance liquid chromatographic analysis has been developed. The selected microextraction conditions were 250 μL of methyl benzoate containing 300 μL of ethanol, 1.0% w/v sodium acetate, and vortex agitation speed of 2100 rpm for 30 s. Under optimum conditions, preconcentration factors were 14.5–39.0 for the target fungicides. Limits of detection were obtained in the range of 0.01–0.05 μg/L. The proposed method was then applied to surface water samples and the recovery evaluations at three spiked concentration levels of 5, 30, and 50 μg/L were obtained in the range of 77.4–110.9% with the relative standard deviation <7.4%. The present method was simple, rapid, low cost, sensitive, environmentally friendly, and suitable for the trace analysis of the studied fungicides in environmental water samples.  相似文献   

6.
A simultaneous derivatization/air‐assisted liquid–liquid microextraction technique has been developed for the sample pretreatment of some parabens in aqueous samples. The analytes were derivatized and extracted simultaneously by a fast reaction/extraction with butylchloroformate (derivatization agent/extraction solvent) from the aqueous samples and then analyzed by GC with flame ionization detection. The effect of catalyst type and volume, derivatization agent/extraction solvent volume, ionic strength of aqueous solution, pH, numbers of extraction, aqueous sample volume, etc. on the method efficiency was investigated. Calibration graphs were linear in the range of 2–5000 μg/L with squared correlation coefficients >0.990. Enhancement factors and enrichment factors ranged from 1535 to 1941 and 268 to 343, respectively. Detection limits were obtained in the range of 0.41–0.62 μg/L. The RSDs for the extraction and determination of 250 μg/L of each paraben were <4.9% (n = 6). In this method, the derivatization agent and extraction solvent were the same and there is no need for a dispersive solvent, which is common in a traditional dispersive liquid–liquid microextraction technique. Furthermore, the sample preparation time is very short.  相似文献   

7.
An ultra high‐performance liquid chromatography with tandem triple quadrupole mass spectrometry residue method was developed and validated for the quantification and identification of dinotefuran and its main metabolites 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) urea and 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) guanidine in fruit (watermelon), vegetable (cucumber), cereal (rice), animal‐derived foods (milk, egg, and pork), soil, and water. The samples were extracted with acetonitrile containing 15% v/v acetic acid and purified with dispersive solid‐phase extraction with octadecylsilane, primary secondary amine, graphitized carbon black, or zirconia‐coated silica prior to analysis. The method had an excellent linearity (R2 ≥ 0.9942, 1–500 μg/L) and satisfactory recoveries (73–102%) at five spiked levels (0.001, 0.01, 0.05, 0.5, and 2 mg/kg) with intra‐ or interday precision in the range of 0.8–9.5% and 3.0–12.8% for the three compounds in the eight matrices. The limits of quantification were 10 μg/kg for 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) guanidine and 1 μg/kg for 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) urea and dinotefuran. The applicability of the developed method was demonstrated by determining the occurrence of dinotefuran, 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) guanidine, and 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) urea in various samples from plants, animal‐derived foods, and the environment. From 80 samples, 70 contained dinotefuran (0.8–11.7 μg/kg), among which six also contained 1‐methyl‐3‐(tetrahydro‐3‐furylmethyl) urea (water and rice, 0.5–0.9 μg/kg).  相似文献   

8.
A simple, sensitive, and efficient method of using a pipette vial to perform dispersive liquid–liquid microextraction based on the solidification of floating organic droplets was coupled with high‐performance liquid chromatography (HPLC) and a diode array detector for the preconcentration and analysis of four benzoylurea insecticides in fruit juice. In this method, 1‐dodecanol was used as an extractant, and a snipped pipette was used as an experimental vial to simplify the procedure of collecting and separating solidified extractant. The experimental parameters were optimized using a Plackett–Burman design and one‐factor‐at‐a‐time method. Under the optimal conditions in the water model, the limits of detection for analytes varied from 0.03 to 0.28 μg/L, and the enrichment factors ranged from 147 to 206. Linearity was achieved for diflubenzuron and flufenoxuron in a range of 0.5–500 μg/L, for hexaflumuron in a range of 1–500 μg/L, and for triflumuron in a range of 5–500 μg/L. The correlation coefficients for the analytes ranged from 0.9986 to 0.9994 with recoveries of 91.4–110.9%. Finally, the developed technique was successfully applied to fruit juice samples with acceptable results. The relative standard deviations of the analytes at two spiking levels (50 and 200 μg/L) varied between 0.2 and 4.5%.  相似文献   

9.
Offline dispersive liquid‐liquid microextraction combined with online pressure‐assisted electrokinetic injection was developed to simultaneously enrich seven phenolic compounds in water samples, followed by determination using capillary electrophoresis, namely phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol. Several parameters affecting separation performance of capillary electrophoresis and the enrichment efficiency of pressure‐assisted electrokinetic injection and dispersive liquid‐liquid microextraction were systematically investigated. Under the optimal conditions, seven phenolic compounds were completely separated within 14 min and good enrichment factors were obtained of 61, 236, 3705, 3288, 920, 86, and 1807 for phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, respectively. Good linearity was attained in the range of 0.1–200 μg/L for 2,4‐dichlorophenol, 0.5–200 μg/L for 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, as well as 1–200 μg/L for phenol, with correlation coefficients (r) over 0.9905. The limits of detection and quantification ranging from 0.03–0.28 and 0.07–0.94 μg/L were attained. This two step enrichment method was potentially applicable for the rapid and simultaneous determination of phenolic compounds in water samples.  相似文献   

10.
The detection frequencies of tefuryltrione, a new type of 4‐hydroxyphenyl‐pyruvate dioxygenase inhibitor herbicide, are rarely reported, probably because of the paucity of analytical methods. Herein, an effective and sensitive analytical method has been developed to detect tefuryltrione in vegetables (tomato and cucumber), cereals (rice and corn), soil, and water by ultra high performance liquid chromatography coupled with tandem mass spectrometry. Comparisons of the performances of dispersive solid‐phase extraction and multiplug filtration cleanup methods were carried out for tefuryltrione in complex matrices. Extraction solvents and purification sorbents were further optimized for dispersive solid‐phase extraction. Tefuryltrione was analyzed with electrospray ionization in the positive mode within 2.0 min. Mean recoveries for tefuryltrione were 75.4–108.9% with relative standard deviations less than 11.0% at three fortification levels (10, 100, 500 μg/kg) in the sample matrixes. Limits of quantification ranged from 0.70 to 5.12 μg/kg, and an excellent linearity (R 2 ≥ 0.9902) was obtained for tefuryltrione at concentrations of 5–1000 μg/L. The results showed that the developed dispersive solid‐phase extraction method could serve as an effective, sensitive, and robust method for routine monitoring of tefuryltrione residue in plants and environmental samples.  相似文献   

11.
Polypropylene hollow fibers as the adsorbent were directly filled into a polyetheretherketone tube for in‐tube solid‐phase microextraction. The surface properties of hollow fibers were characterized by a scanning electron microscope. Combined with high performance liquid chromatography, the extraction tube showed good extraction performance for five environmental estrogen hormones. To achieve high analytical sensitivity, four important factors containing sampling volume, sampling rate, content of organic solvent in sample, and desorption time were investigated. Under the optimum conditions, an online analysis method was established with wide linear range (0.03–20 µg/L), good correlation coefficients (≥0.9998), low limits of detection (0.01–0.05 µg/L), low limits of quantitation (0.03–0.16 µg/L), and high enrichment factors (1087–2738). Relative standard deviations (n = 3) for intraday (≤3.6%) and interday (≤5.1%) tests proved the stable extraction performance of the material. Durability and chemical stability of the extraction tube were also investigated, relative standard deviations of all analytes were less than 5.8% (n = 3), demonstrating the satisfactory stability. Finally, the method was successfully applied to detect estrogens in real samples.  相似文献   

12.
A sensitive dispersive micro solid‐phase extraction coupled with HPLC has been developed for preconcentration and determination of three flavonoids (quercetin, kaempferol, and isorhamnetin) in complex matrix samples. Parameters that affect extraction efficiency have been optimized. The optimal extraction conditions are using 2 μg/mL of crab shell as the sorbent, extraction for 2 min at pH 7, and then eluting with 100 μL of methanol. As a result, the method shows good linearity (R > 0.9994), low LODs (even 0.08 ng/ml) and satisfactory recovery in real honey and rat urine samples. As an eco‐friendly biomaterial, crab shell powder is used as sorbent in pretreatment of flavonoids, and its adsorption mechanism has been investigated for the first time. Compared with the other reported methods, the proposed strategy is time‐saving, eco‐friendly, and highly sensitive using HPLC (even achieving MS grade sensitivity).  相似文献   

13.
We utilized ultra‐high performance liquid chromatography with tandem mass spectrometry and dispersive solid‐phase extraction to develop a new method for the detection of nine analytes (scopolamine, cephaeline, strychnine, hyoscyamine, brucine, hydrastine, ajmalicine, colchicine, and oleandrin) in herbal cosmetics. Acetonitrile/water and 2‐propylaminoethylamine were used to disperse and purify during the dispersive solid‐phase extraction step. The analytes were separated by a Waters UPLC HSS T3 column and detected through electrospray ionization source in the positive mode with multi‐reaction monitoring conditions. Under the optimal conditions, the calibration curves were linear in the range of 0.2–100.0 μg/L with the correlation coefficients higher than 0.995. The method limit of quantitation (S/N = 10) were 5.0 μg/kg for oleandrin and 1.0 μg/kg for the other eight alkaloids. The mean recoveries at three spiked concentration levels of 1.0–10.0 μg/kg were in the range of 86.9–116.5% with the intra‐day relative standard deviations (n  = 6) ranging from 2.4 to 8.8%, and inter‐day relative standard deviations ranging from 2.7 to 5.7%. This method is accurate, simple and rapid, and has been applied to the quality supervision of herbal cosmetics in Guangzhou.  相似文献   

14.
A simple, rapid, and novel method has been developed and validated for determination of seven indicator polychlorinated biphenyls in water samples by gas chromatography with electron capture detection. 1 L of water samples containing 30 g of anhydrous sodium sulfate was first liquid–liquid extracted with an automated Jipad‐6XB vertical oscillator using n‐hexane/dichloromethane (1:1, v/v). The concentrated extract was cleaned up by dispersive solid‐phase extraction with 100 mg of primary secondary amine as sorbent material. The linearity of this method ranged from 1.25 to 100 μg/L, with regression coefficients ranging between 0.9994 and 0.9999. The limits of detection were in the ng/L level, ranging between 0.2 and 0.3 ng/L. The recoveries of seven spiked polychlorinated biphenyls with external calibration method at different concentration levels in tap water, lake water, and sea water were in the ranges of 85–112, 76–116, and 72–108%, respectively, and with relative standard deviations of 3.3–4.5, 3.4–5.6, and 3.1–4.8% (n =  5), respectively. The performance of the proposed method was compared with traditional liquid–liquid extraction and solid‐phase extraction clean‐up methods, and comparable efficiencies were obtained. It is concluded that this method can be successfully applied for the determination of polychlorinated biphenyls in different water samples.  相似文献   

15.
In this work, various types of metal‐organic frameworks were synthesized, and their affinities toward buprenorphine were evaluated using dispersive solid‐phase extraction. The extracted buprenorphine was determined by ultra high performance liquid chromatography‐ultraviolet detection system. The highest extraction recovery was observed by employing zeolitic imidazole framework‐67. Then, a facile and fast extraction method was designed for the extraction and purification of the target drug. Optimization of the extraction method was carried out by the design of experiment approach. A linearity range of 1–1000 μg/L with the limit of detection of 0.15 μg/L and relative standard deviations (50 μg/L, n = 5) of 3.4% was obtained for standard sample analysis. Under optimized experimental and instrumental conditions, the relative recoveries were in the range of 95 to 111%. Eventually, zeolitic imidazole framework‐67 was successfully employed for the extraction and determination of buprenorphine in the biological fluids with satisfactory results.  相似文献   

16.
Simple and highly efficient sample preparation procedures, namely, dispersive liquid–liquid microextraction and salting‐out liquid–liquid extraction for the analysis of ten Fusarium mycotoxins and metabolites in human urine were compared. Various parameters affecting extraction efficiency were carefully evaluated. Under optimal extraction conditions, salting‐out liquid–liquid extraction showed a better accuracy (84–96%) and precision (<14%) than dispersive liquid–liquid microextraction. Hence, a multibiomarker method based on salting‐out liquid–liquid extraction followed by gas chromatography with tandem mass spectrometry was proposed. Satisfactory results in terms of validation were achieved. The method resulted in low limits of detection and quantitation within the range of 0.12–4 and 0.25–8 μg/L, respectively. The method accuracy and precision were evaluated at three spiking levels (8, 25 and 100 μg/L) and the recoveries were in a range from 70 to 120% with relative standard deviations lower than 15%. Matrix effect was evaluated and matrix‐matched calibrations were used for quantitation purpose. The developed method was applied in 12 human urine samples as a pilot study before and after sample treatment with β‐glucuronidase before the analysis to quantify the mycotoxin conjugates. Total deoxynivalenol (free + conjugated) was found in 83% of samples at an average concentration in positive samples of 31.6 μg/L.  相似文献   

17.
A new simple and rapid pretreatment method for simultaneous determination of 19 sulfonamides in pork samples was developed through combining the QuEChERS method with dispersive liquid–liquid microextraction followed by ultra‐high performance liquid chromatography with tandem mass spectrometry. The sample preparation involves extraction/partitioning with QuEChERS method followed by dispersive liquid–liquid microextraction using tetrachloroethane as extractive solvent and the acetonitrile extract as dispersive solvent that obtained by QuEChERS. The enriched tetrachloroethane organic phase by dispersive liquid–liquid microextraction was evaporated, reconstituted with 100 μL acetonitrile/water (1:9 v/v) and injected into an ultra‐high performance liquid chromatography with a mobile phase composed of acetonitrile and 0.1% v/v formic acid under gradient elution and separated using a BHE C18 column. Various parameters affecting the extraction efficiency were investigated. Matrix‐matched calibration curves were established. Good linear relationships were obtained for all analytes in a range of 2.0–100 μg/kg and the limits of detection were 0.04–0.49 μg/kg. Average recoveries at three spiking levels were in the range of 78.3–106.1% with relative standard deviations less than 12.7% (n = 6). The developed method was successfully applied to determine sulfonamide residues in pork samples.  相似文献   

18.
A method was developed to determine 2‐mercaptobenzimidazole in water and urine samples using dispersive liquid–liquid microextraction technique coupled with ultraviolet–visible spectrophotometry. It was essential to peruse the effect of all parameters that can likely influence the performance of extraction. The influence of parameters, such as dispersive and extraction solvent volume and sample volume, on dispersive liquid–liquid microextraction was studied. The optimization was carried out by the central composite design method. The central composite design optimization method resulted in 1.10 mL dispersive solvent, 138.46 μL extraction solvent, and 4.46 mL sample volume. Under the optimal terms, the calibration curve was linear over the range of 0.003–0.18 and 0.007–0.18 μg/mL in water and urine samples, respectively. The limit of detection and quantification of the proposed approach for 2‐mercaptobenzimidazole were 0.013 and 0.044 μg/mL in water samples and 0.016 and 0.052 μg/mL in urine samples, respectively. The method was successfully applied to determination of 2‐mercaptobenzimidazole in urine and water samples.  相似文献   

19.
An in‐tube solid‐phase microextraction device was developed by packing poly(ionic liquids)‐coated stainless‐steel wires into a polyether ether ketone tube. An anion‐exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)‐coated stainless‐steel wires were characterized by scanning electron microscopy and energy dispersive X‐ray spectrometry. The extraction device was connected to high‐performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03–20 μg/L, detection limits of 0.010–0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1–118.9%.  相似文献   

20.
In this study, the viability of two membrane‐based microextraction techniques for the determination of endocrine disruptors by high‐performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid–liquid extraction and hollow‐fiber‐supported dispersive liquid–liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2‐ethylhexyl‐4‐methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid–liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1‐octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5–4.6 μg/L and the limits of quantification were 2–16 μg/L. The analyte relative recoveries were 67–116%, and the relative standard deviations were less than 15.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号